
Copyright Microsoft Corporation 1999-2000. All Rights Reserved.
Please send corrections, comments, and other feedback to sharp@microsoft.com

#
Language Specification

File: C# Language Specification.doc

Last saved: 5/7/2001

Version 0.28

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Copyright Microsoft Corporation 1999-2001. All Rights Reserved.

Notice

This documentation is an early release of the final documentation, which may be changed substantially prior to final
commercial release.

This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied,
in this document. Information in this document is subject to change without notice. The entire risk of the use or the results
of the use of this document remains with the user.

Complying with all applicable copyright laws is the responsibility of the user. Wit hout limiting the rights under copyright,
no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or
by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any pu rpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the
furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual
property.

’ 1999-2001 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Visual Basic, and Visual C++ are either registered trademarks or trademarks of Microsoft
Corporation in the U.S.A. and/or other countries/regions.

Other product and company names mentioned herein may be the trademarks of their respective owners.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Table of Contents

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. iii

Table of Contents

1. Introduction ...1
1.1 Getting started..1
1.2 Types..2

1.2.1 Predefined types ..4
1.2.2 Conversions...6
1.2.3 Array types ..6
1.2.4 Type system unification ..8

1.3 Variables and parameters ...9
1.4 Automatic memory management ...12
1.5 Expressions ..14
1.6 Statements ..15
1.7 Classes..18

1.7.1 Constants ...20
1.7.2 Fields ...20
1.7.3 Methods...21
1.7.4 Properties...23
1.7.5 Events ..23
1.7.6 Operators ...24
1.7.7 Indexers ...26
1.7.8 Instance constructors ...27
1.7.9 Destructors...27
1.7.10 Static constructors ...28
1.7.11 Inheritance ...28

1.8 Structs ..30
1.9 Interfaces..30
1.10 Delegates..32
1.11 Enums ..33
1.12 Namespaces and assemblies...33
1.13 Versioning..35
1.14 Attributes..37

2. Lexical structure ..39
2.1 Programs ..39
2.2 Grammars...39

2.2.1 Grammar notation..39
2.2.2 Lexical grammar..40
2.2.3 Syntactic grammar...40

2.3 Lexical analysis..40
2.3.1 Line terminators ..41
2.3.2 White space ...41
2.3.3 Comments..42

2.4 Tokens..43
2.4.1 Unicode character escape sequences ...43
2.4.2 Identifiers...44
2.4.3 Keywords...45
2.4.4 Literals...46

2.4.4.1 Boolean literals ...46
2.4.4.2 Integer literals ...46
2.4.4.3 Real literals ...47

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

iv Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

2.4.4.4 Character literals ...48
2.4.4.5 String literals...49
2.4.4.6 The null literal...51

2.4.5 Operators and punctuators...51
2.5 Pre-processing directives ...51

2.5.1 Conditional compilation symbols..52
2.5.2 Pre-processing expressions..53
2.5.3 Declaration directives..53
2.5.4 Conditional compilation directives..54
2.5.5 Line directives ...56
2.5.6 Diagnostic directives ...57
2.5.7 Region directives ...57

3. Basic concepts...59
3.1 Program Startup ...59
3.2 Program termination ..60
3.3 Declarations ...60
3.4 Members ..62

3.4.1 Namespace members ...62
3.4.2 Struct members..62
3.4.3 Enumeration members...63
3.4.4 Class members...63
3.4.5 Interface members ...63
3.4.6 Array members ..63
3.4.7 Delegate members ...63

3.5 Member access...63
3.5.1 Declared accessibility..64
3.5.2 Accessibility domains..64
3.5.3 Protected access for instance members ...67
3.5.4 Accessibility constraints..67

3.6 Signatures and overloading ..68
3.7 Scopes ..69

3.7.1 Name hiding ..71
3.7.1.1 Hiding through nesting ...71
3.7.1.2 Hiding through inheritance ...72

3.8 Namespace and type names ...73
3.8.1 Fully qualified names ..74

3.9 Automatic memory management ...75
4. Types ...77

4.1 Value types...77
4.1.1 Default constructors ..78
4.1.2 Struct types ..79
4.1.3 Simple types ..79
4.1.4 Integral types ...80
4.1.5 Floating point types ...81
4.1.6 The decimal type ...82
4.1.7 The bool type...83
4.1.8 Enumeration types...83

4.2 Reference types ..83
4.2.1 Class types...84

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Table of Contents

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. v

4.2.2 The object type ..84
4.2.3 The string type...84
4.2.4 Interface types ...84
4.2.5 Array types ..85
4.2.6 Delegate types ...85

4.3 Boxing and unboxing ...85
4.3.1 Boxing conversions ...85
4.3.2 Unboxing conversions ...86

5. Variables...87
5.1 Variable categories...87

5.1.1 Static variables ..87
5.1.2 Instance variables ..87

5.1.2.1 Instance variables in classes ...87
5.1.2.2 Instance variables in structs ..88

5.1.3 Array elements ..88
5.1.4 Value parameters ...88
5.1.5 Reference parameters ..88
5.1.6 Output parameters ...88
5.1.7 Local variables ..89

5.2 Default values ..89
5.3 Definite assignment..90

5.3.1 Initially assigned variables ..92
5.3.2 Initially unassigned variables ..92

5.4 Variable references ..92
6. Conversions ..93

6.1 Implicit conversions...93
6.1.1 Identity conversion ..93
6.1.2 Implicit numeric conversions ..93
6.1.3 Implicit enumeration conversions ...94
6.1.4 Implicit reference conversions ..94
6.1.5 Boxing conversions ...94
6.1.6 Implicit constant expression conversions ..95
6.1.7 User-defined implicit conversions...95

6.2 Explicit conversions...95
6.2.1 Explicit numeric conversions ..95
6.2.2 Explicit enumeration conversions ...96
6.2.3 Explicit reference conversions ..97
6.2.4 Unboxing conversions ...97
6.2.5 User-defined explicit conversions ...98

6.3 Standard conversions ...98
6.3.1 Standard implicit conversions ...98
6.3.2 Standard explicit conversions..98

6.4 User-defined conversions...98
6.4.1 Permitted user-defined conversions ..98
6.4.2 Evaluation of user-defined conversions ..98
6.4.3 User-defined implicit conversions...99
6.4.4 User-defined explicit conversions ...100

7. Expressions...103
7.1 Expression classifications ..103

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

vi Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

7.1.1 Values of expressions ..104
7.2 Operators..104

7.2.1 Operator precedence and associativity ..104
7.2.2 Operator overloading...105
7.2.3 Unary operator overload resolution...106
7.2.4 Binary operator overload resolution..107
7.2.5 Candidate user-defined operators ..107
7.2.6 Numeric promotions..107

7.2.6.1 Unary numeric promotions ...108
7.2.6.2 Binary numeric promotions ..108

7.3 Member lookup ..109
7.3.1 Base types..109

7.4 Function members..109
7.4.1 Argument lists ...112
7.4.2 Overload resolution ...114

7.4.2.1 Applicable function member ..115
7.4.2.2 Better function member ..115
7.4.2.3 Better conversion ..115

7.4.3 Function member invocation...116
7.4.3.1 Invocations on boxed instances ..117

7.4.4 Virtual function member lookup ...117
7.4.5 Interface function member lookup ..117

7.5 Primary expressions ...118
7.5.1 Literals...118
7.5.2 Simple names ..118

7.5.2.1 Invariant meaning in blocks..119
7.5.3 Parenthesized expressions ...120
7.5.4 Member access ..120

7.5.4.1 Identical simple names and type names..122
7.5.5 Invocation expressions ..122

7.5.5.1 Method invocations ..123
7.5.5.2 Delegate invocations...123

7.5.6 Element access ..124
7.5.6.1 Array access..124
7.5.6.2 Indexer access ...125

7.5.7 This access...125
7.5.8 Base access ..126
7.5.9 Postfix increment and decrement operators ..126
7.5.10 new operator ..127

7.5.10.1 Object creation expressions ..127
7.5.10.2 Array creation expressions..128
7.5.10.3 Delegate creation expressions...130

7.5.11 The typeof operator ...131
7.5.12 The checked and unchecked operators ..132

7.6 Unary expressions ..134
7.6.1 Unary plus operator ...135
7.6.2 Unary minus operator ..135
7.6.3 Logical negation operator..135
7.6.4 Bitwise complement operator..136
7.6.5 Indirection operator ...136
7.6.6 Address operator..136

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Table of Contents

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. vii

7.6.7 Prefix increment and decrement operators ..136
7.6.8 Cast expressions ..137

7.7 Arithmetic operators ..137
7.7.1 Multiplication operator..138
7.7.2 Division operator ...139
7.7.3 Remainder operator ...139
7.7.4 Addition operator ..140
7.7.5 Subtraction operator ..142

7.8 Shift operators ..143
7.9 Relational and type testing operators ...145

7.9.1 Integer comparison operators ..145
7.9.2 Floating-point comparison operators...146
7.9.3 Decimal comparison operators ..146
7.9.4 Boolean equality operators..147
7.9.5 Enumeration comparison operators...147
7.9.6 Reference type equality operators ...147
7.9.7 String equality operators ...148
7.9.8 Delegate equality operators ...149
7.9.9 The is operator...149
7.9.10 The as operator ..150

7.10 Logical operators..150
7.10.1 Integer logical operators ..151
7.10.2 Enumeration logical operators...151
7.10.3 Boolean logical operators ..151

7.11 Conditional logical operators ...151
7.11.1 Boolean conditional logical operators ...152
7.11.2 User-defined conditional logical operators..152

7.12 Conditional operator ..153
7.13 Assignment operators...154

7.13.1 Simple assignment...154
7.13.2 Compound assignment ..156
7.13.3 Event assignment...157

7.14 Expression..157
7.15 Constant expressions..157
7.16 Boolean expressions...158

8. Statements ..159
8.1 End points and reachability..159
8.2 Blocks ..161

8.2.1 Statement lists..161
8.3 The empty statement ..161
8.4 Labeled statements...162
8.5 Declaration statements ...162

8.5.1 Local variable declarations..163
8.5.2 Local constant declarations ...163

8.6 Expression statements ..164
8.7 Selection statements...164

8.7.1 The if statement ...165
8.7.2 The switch statement ...165

8.8 Iteration statements ..169
8.8.1 The while statement...169

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

viii Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

8.8.2 The do statement ...169
8.8.3 The for statement...170
8.8.4 The foreach statement ...171

8.9 Jump statements ...174
8.9.1 The break statement...174
8.9.2 The continue statement..175
8.9.3 The goto statement ..175
8.9.4 The return statement ..177
8.9.5 The throw statement ..177

8.10 The try statement..178
8.11 The checked and unchecked statements...181
8.12 The lock statement ...181
8.13 The using statement ...182

9. Namespaces ..185
9.1 Compilation units...185
9.2 Namespace declarations...185
9.3 Using directives..186

9.3.1 Using alias directives...187
9.3.2 Using namespace directives ..189

9.4 Namespace members..191
9.5 Type declarations ...191

10. Classes...193
10.1 Class declarations...193

10.1.1 Class modifiers ..193
10.1.1.1 Abstract classes...193
10.1.1.2 Sealed classes..194

10.1.2 Class base specification...194
10.1.2.1 Base classes ..195
10.1.2.2 Interface implementations...196

10.1.3 Class body ...196
10.2 Class members ...196

10.2.1 Inheritance ...197
10.2.2 The new modifier ..198
10.2.3 Access modifiers ...198
10.2.4 Constituent types ...198
10.2.5 Static and instance members ...198
10.2.6 Nested types ..199

10.2.6.1 Fully qualified name ...199
10.2.6.2 Declared accessibility ...200
10.2.6.3 Hiding ...200
10.2.6.4 this access ...201
10.2.6.5 Access to private and protected members of the containing type ...201

10.2.7 Reserved member names...202
10.2.7.1 Member Names Reserved for Properties ..203
10.2.7.2 Member Names Reserved for Events ...203
10.2.7.3 Member Names Reserved for Indexers...203
10.2.7.4 Member Names Reserved for Destructors ..203

10.3 Constants..203
10.4 Fields..205

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Table of Contents

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. ix

10.4.1 Static and instance fields ...206
10.4.2 Readonly fields..206

10.4.2.1 Using static readonly fields for constants ...207
10.4.2.2 Versioning of constants and static readonly fields ...207

10.4.3 Volatile fields ..208
10.4.4 Field initialization..208
10.4.5 Variable initializers ...208

10.4.5.1 Static field initialization..209
10.4.5.2 Instance field initialization..209

10.5 Methods..210
10.5.1 Method parameters ..211

10.5.1.1 Value parameters ..212
10.5.1.2 Reference parameters..212
10.5.1.3 Output parameters...213
10.5.1.4 Parameter arrays ...214

10.5.2 Static and instance methods...216
10.5.3 Virtual methods ...216
10.5.4 Override methods ..218
10.5.5 Sealed methods..220
10.5.6 Abstract methods...221
10.5.7 External methods...222
10.5.8 Method body..222
10.5.9 Method overloading ..223

10.6 Properties ...223
10.6.1 Static and instance properties ..224
10.6.2 Accessors...225
10.6.3 Virtual, sealed, override, and abstract accessors ...229
10.6.4 External properties ..230

10.7 Events...231
10.7.1 Event accessors..233
10.7.2 Static and instance events..234
10.7.3 Virtual, sealed, override, and abstract accessors ...234
10.7.4 External events ..235

10.8 Indexers..235
10.8.1 Indexer overloading...238

10.9 Operators..238
10.9.1 Unary operators ...239
10.9.2 Binary operators ..240
10.9.3 Conversion operators...240

10.10 Instance constructors..242
10.10.1 Constructor initializers ..243
10.10.2 Instance variable initializers ..243
10.10.3 Constructor execution..244
10.10.4 Default constructors ..245
10.10.5 Private constructors ...246
10.10.6 Optional instance constructor parameters ...246

10.11 Static constructors ..247
10.12 Destructors ...248

11. Structs ...251
11.1 Struct declarations..251

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

x Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

11.1.1 Struct modifiers ...251
11.1.2 Struct interfaces...252
11.1.3 Struct body ..252

11.2 Struct members ..252
11.3 Class and struct differences..252

11.3.1 Value semantics...252
11.3.2 Inheritance ...253
11.3.3 Assignment..253
11.3.4 Default values..253
11.3.5 Boxing and unboxing ..254
11.3.6 Meaning of this..254
11.3.7 Field initializers ...254
11.3.8 Constructors...255
11.3.9 Destructors...255

11.4 Struct examples ..255
11.4.1 Database integer type ..255
11.4.2 Database boolean type...257

12. Arrays ...261
12.1 Array types...261

12.1.1 The System.Array type..262
12.2 Array creation ..262
12.3 Array element access ...262
12.4 Array members...262
12.5 Array covariance ..262
12.6 Array initializers ..263

13. Interfaces ..265
13.1 Interface declarations ...265

13.1.1 Interface modifiers ..265
13.1.2 Base interfaces...265
13.1.3 Interface body..266

13.2 Interface members..266
13.2.1 Interface methods ..267
13.2.2 Interface properties..267
13.2.3 Interface events..268
13.2.4 Interface indexers ..268
13.2.5 Interface member access..268

13.3 Fully qualified interface member names..270
13.4 Interface implementations..270

13.4.1 Explicit interface member implementations..271
13.4.2 Interface mapping..273
13.4.3 Interface implementation inheritance ..275
13.4.4 Interface re-implementation ..277
13.4.5 Abstract classes and interfaces ..278

14. Enums ...281
14.1 Enum declarations..281
14.2 Enum modifiers..282
14.3 Enum members ..282
14.4 Enum values and operations ..284

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Table of Contents

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. xi

15. Delegates ...285
15.1 Delegate declarations ...285
15.2 Delegate instantiation...287
15.3 Delegate invocation..287

16. Exceptions...291
16.1 Causes of exceptions..291
16.2 The System.Exception class...291
16.3 How exceptions are handled ..291
16.4 Common Exception Classes...292

17. Attributes..295
17.1 Attribute classes ...295

17.1.1 Attribute usage ..295
17.1.2 Positional and named parameters ..296
17.1.3 Attribute parameter types ..297

17.2 Attribute specification..297
17.3 Attribute instances..300

17.3.1 Compilation of an attribute..301
17.3.2 Run-time retrieval of an attribute instance ..301

17.4 Reserved attributes ...301
17.4.1 The AttributeUsage attribute ...301
17.4.2 The Conditional attribute...302
17.4.3 The Obsolete attribute ...304

A. Unsafe code..305
A.1 Unsafe contexts ...305
A.2 Pointer types..307
A.3 Fixed and moveable variables ...310
A.4 Pointer conversions ...310
A.5 Pointers in expressions..311

A.5.1 Pointer indirection ..312
A.5.2 Pointer member access ...312
A.5.3 Pointer element access..313
A.5.4 The address-of operator ..313
A.5.5 Pointer increment and decrement ...314
A.5.6 Pointer arithmetic ...314
A.5.7 Pointer comparison...315
A.5.8 The sizeof operator ...315

A.6 The fixed statement ...316
A.7 Stack allocation ...319
A.8 Dynamic memory allocation ...320

B. Interoperability ...323
B.1 The ComAliasName attribute..323
B.2 The ComImport attribute...323
B.3 The ComRegisterFunction attribute ..324
B.4 The ComSourceInterfaces attribute...324
B.5 The ComUnregisterFunction attribute...324
B.6 The ComVisible attribute ..324
B.7 The DispId attribute...325
B.8 The DllImport attribute ...325

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

xii Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

B.9 The FieldOffset attribute ...326
B.10 The Guid attribute ...326
B.11 The HasDefaultInterface attribute ...326
B.12 The ImportedFromTypeLib attribute ..327
B.13 The In and Out attributes...327
B.14 The IndexerName attribute..328
B.15 The InterfaceType attribute ...328
B.16 The MarshalAs attribute..328
B.17 The NoIDispatch attribute ...328
B.18 The PreserveSig attribute ..329
B.19 The StructLayout attribute...329
B.20 The TypeLibFunc attribute..329
B.21 The TypeLibType attribute..330
B.22 The TypeLibVar attribute..330
B.23 Supporting enums..330

C. Grammar...333
C.1 Lexical grammar..333

C.1.1 Line terminators..333
C.1.2 White space...333
C.1.3 Comments ...333
C.1.4 Tokens...334
C.1.5 Unicode character escape sequences ..334
C.1.6 Identifiers..334
C.1.7 Keywords..336
C.1.8 Literals ..336
C.1.9 Operators and punctuators ..338
C.1.10 Pre-processing directives ..338

C.2 Syntactic grammar...340
C.2.1 Basic concepts ..340
C.2.2 Types ..340
C.2.3 Variables ...342
C.2.4 Expressions...342
C.2.5 Statements...345
C.2.6 Classes ..349
C.2.7 Structs ...355
C.2.8 Arrays ...355
C.2.9 Interfaces...356
C.2.10 Enums ...357
C.2.11 Delegates...357
C.2.12 Attributes ..357

C.3 Grammar extensions for unsafe code ..359
C.3.1 Unsafe contexts...359

C.3.1.1 Pointer types...360
C.3.1.2 Pointers in expressions...360
C.3.1.3 Pointer indirection..360
C.3.1.4 Pointer member access...360
C.3.1.5 The address-of operator..360
C.3.1.6 The sizeof operator...360
C.3.1.7 The fixed statement ..361
C.3.1.8 Stack allocation ..361

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Table of Contents

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. xiii

D. References..362

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 1

1. Introduction

C# is a simple, modern, object oriented, and type-safe programming language derived from C and C++. It will
immediately be familiar to C and C++ programmers. C# aims to combine the high productivity of Visual Basic
and the raw power of C++.

C# is provided as part of Microsoft Visual Studio 7.0. In addition to C#, Visual Studio supports Visual Basic,
Visual C++, and the scripting languages VBScript and JScript. All of these languages provide access to the
Microsoft .NET platform, which includes a common execution engine and a rich class library. The Microsoft
.NET platform defines a ” Common Language Specification„ (CLS), a sort of lingua franca that ensures seamless
interoperability between CLS-compliant languages and class libraries. For C# developers, this means that even
though C# is a new language, it has complete access to the same rich class libraries that are used by seasoned
tools such as Visual Basic and Visual C++. C# itself does not include a class library.

The rest of this chapter describes the essential features of the langua ge. While later chapters describe rules and
exceptions in a detail-oriented and sometimes mathematical manner, this chapter strives for clarity and brevity at
the expense of completeness. The intent is to provide the reader with an introduction to the lang uage that will
facilitate the writing of early programs and the reading of later chapters.

1.1 Getting started
The canonical ” hello, world„ program can be written as follows:

using System;

class Hello
{
 static void Main() {
 Console.WriteLine("hello, world");
 }
}

The source code for a C# program is typically stored in one or more text files with a file extension of .cs, as in
hello.cs. Using the command-line compiler provided with Visual Studio, such a program can be compiled
with the command line directive

csc hello.cs

which produces an executable program named hello.exe. The output of the program is:
hello, world

Close examination of this program is illuminating:

• The using System; directive references a namespace called System that is provided by the Microsoft
.NET Framework class library. This namespace contains the Console class referred to in the Main method.
Namespaces provide a hierarchical means of organizing the elements of a class library or program. A
” using„ directive enables unqualified use of the types that are members of the namespace. The ” hello,
world„ program uses Console.WriteLine as a shorthand for System.Console.WriteLine.

• The Main method is a member of the class Hello. It has the static modifier, and so it is a method on the
class Hello rather than on instances of this class.

• The main entry point for a program’ the method that is called to begin execution’ is always a static
method named Main.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

2 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• The ” hello, world„ output is produced through the use of a class library. The language does not its elf
provide a class library. Instead, it uses a common class library that is also used by languages such as Visual
Basic and Visual C++.

For C and C++ developers, it is interesting to note a few things that do not appear in the ” hello, world„ program.

• The program does not use a global method for Main. Methods and variables are not supported at the global
level; such elements are always contained within type declarations (e.g., class and struct declarations).

• The program does not use either ” ::„ or ” ->„ operators. The ” ::„ is not an operator at all, and the ” ->„
operator is used in only a small fraction of programs. The separator ” .„ is used in compound names such as
Console.WriteLine.

• The program does not contain forward declarations. Forward declarations are never needed, as declaration
order is not significant.

• The program does not use #include to import program text. Dependencies among programs are handled
symbolically rather than textually. This approach eliminates barriers between programs written in dif ferent
languages. For example, the Console class could be written in another language.

1.2 Types
C# supports two kinds of types: value types and reference types. Value types include simple types (e.g., char,
int, and float), enum types, and struct types. Reference types include class types, interface types, delegate
types, and array types.

Value types differ from reference types in that variables of the value types directly contain their data, whereas
variables of the reference types store references to objects . With reference types, it is possible for two variables
to reference the same object, and thus possible for operations on one variable to affect the object referenced by
the other variable. With value types, the variables each have their own copy of the data, and it is not possible for
operations on one to affect the other.

The example
using System;

class Class1
{
 public int Value = 0;
}

class Test
{
 static void Main() {
 int val1 = 0;
 int val2 = val1;
 val2 = 123;

 Class1 ref1 = new Class1();
 Class1 ref2 = ref1;
 ref2.Value = 123;

 Console.WriteLine("Values: {0}, {1}", val1, val2);
 Console.WriteLine("Refs: {0}, {1}", ref1.Value, ref2.Value);
 }
}

shows this difference. The output of the program is
Values: 0, 123
Refs: 123, 123

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 3

The assignment to the local variable val1 does not impact the local variable val2 because both local variables
are of a value type (the type int) and each local variable of a value type has its own storage. In contrast, the
assignment ref2.Value = 123; affects the object that both ref1 and ref2 reference.

The lines
Console.WriteLine("Values: {0}, {1}", val1, val2);
Console.WriteLine("Refs: {0}, {1}", ref1.Value, ref2.Value);

deserve further comment, as they demonstrate some of the string formatting behavior of Console.WriteLine,
which takes a variable number of arguments. The first argument is a string, which may contain numbered
placeholders like {0} and {1}. Each placeholder refers to a trailing argument with {0} referring to the second
argument, {1} referring to the third argument, and so on. Before the output is sent to the console, each
placeholder is replaced with the formatted value of its corresponding argument.

Developers can define new value types through enum and struct declarations, and can define new reference
types via class, interface, and delegate declarations. The example

using System;

public enum Color
{
 Red, Blue, Green
}

public struct Point
{
 public int x, y;
}

public interface IBase
{
 void F();
}

public interface IDerived: IBase
{
 void G();
}

public class A
{
 protected virtual void H() {
 Console.WriteLine("A.H");
 }
}

public class B: A, IDerived
{
 public void F() {
 Console.WriteLine("B.F, implementation of IDerived.F");
 }

 public void G() {
 Console.WriteLine("B.G, implementation of IDerived.G");
 }

 override protected void H() {
 Console.WriteLine("B.H, override of A.H");
 }
}

public delegate void EmptyDelegate();

shows an example or two for each kind of type declaration. Later sections describe type declarations in detail.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

4 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

1.2.1 Predefined types
C# provides a set of predefined types, most of which will be familiar to C and C++ developers.

The predefined reference types are object and string. The type object is the ultimate base type of all other
types. The type string is used to represent Unicode string values. Values of type string are immutable.

The predefined value types include signed and unsigned integral types, floating point types, and the types bool,
char, and decimal. The signed integral types are sbyte, short, int, and long; the unsigned integral types
are byte, ushort, uint, and ulong; and the floating point types are float and double.

The bool type is used to represent boolean values: values that are either true or false. The inclusion of bool
makes it easier to write self-documenting code, and also helps eliminate the all-too-common C++ coding error
in which a developer mistakenly uses ” =„ when ” ==„ should have been used. In C#, the example

int i = ...;
F(i);
if (i = 0) // Bug: the test should be (i == 0)
 G();

is invalid because the expression i = 0 is of type int, and if statements require an expression of type bool.

The char type is used to represent Unicode characters. A variable of type char represents a single 16-bit
Unicode character.

The decimal type is appropriate for calculations in which rounding errors caused by floating point
representations are unacceptable. Common examples include financial calculations such as tax computations
and currency conversions. The decimal type provides 28 significant digits.

The table below lists the predefined types, and shows how to write literal values for each of them.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 5

Type Description Example
object The ultimate base type of all other types object o = null;

string String type; a string is a sequence of Unicode
characters

string s = "hello";

sbyte 8-bit signed integral type sbyte val = 12;

short 16-bit signed integral type short val = 12;

int 32-bit signed integral type int val = 12;

long 64-bit signed integral type long val1 = 12;
long val2 = 34L;

byte 8-bit unsigned integral type byte val1 = 12;
byte val2 = 34U;

ushort 16-bit unsigned integral type ushort val1 = 12;
ushort val2 = 34U;

uint 32-bit unsigned integral type uint val1 = 12;
uint val2 = 34U;

ulong 64-bit unsigned integral type ulong val1 = 12;
ulong val2 = 34U;
ulong val3 = 56L;
ulong val4 = 78UL;

float Single-precision floating point type float val = 1.23F;

double Double-precision floating point type double val1 = 1.23;
double val2 = 4.56D;

bool Boolean type; a bool value is either true or false bool val1 = true;
bool val2 = false;

char Character type; a char value is a Unicode character char val = 'h';

decimal Precise decimal type with 28 significant digits decimal val = 1.23M;

Each of the predefined types is shorthand for a system-provided type. For example, the keyword int refers to
the struct System.Int32. As a matter of style, use of the keyword is favored over use of the complete system
type name.

Predefined value types such as int are treated specially in a few ways but are for the most part treated exactly
like other structs. Operator overloading enables developers to define new struct types that behave much like the
predefined value types. For instance, a Digit struct can support the same mathematical operations as the
predefined integral types, and can define conversions between Digit and predefined types.

The predefined types employ operator overloading themselves. For example, the comparison operators == and
!= have different semantics for different predefined types:

• Two expressions of type int are considered equal if they represent the same integer value.

• Two expressions of type object are considered equal if both refer to the same object, or if both are null.

• Two expressions of type string are considered equal if the string instances have identical l engths and
identical characters in each character position, or if both are null.

The example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

6 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

class Test
{
 static void Main() {
 string s = "Test";
 string t = string.Copy(s);
 Console.WriteLine(s == t);
 Console.WriteLine((object)s == (object)t);
 }
}

produces the output
True
False

because the first comparison compares two expressions of type string, and the second comparison compares
two expressions of type object.

1.2.2 Conversions
The predefined types also have predefined conversions. For instance, conversions exist between the predefined
types int and long. C# differentiates between two kinds of conversions: implicit conversions and explicit
conversions. Implicit conversions are supplied for conversions that can safely be performed without careful
scrutiny. For instance, the conversion from int to long is an implicit conversion. This conversion always
succeeds, and never results in a loss of information. Implicit conversions can be performed implicitly, as shown
in the example

using System;

class Test
{
 static void Main() {
 int intValue = 123;
 long longValue = intValue;
 Console.WriteLine("{0}, {1}", intValue, longValue);
 }
}

which implicitly converts an int to a long.

In contrast, explicit conversions are performed with a cast expression. The exampl e
using System;

class Test
{
 static void Main() {
 long longValue = Int64.MaxValue;
 int intValue = (int) longValue;
 Console.WriteLine("(int) {0} = {1}", longValue, intValue);
 }
}

uses an explicit conversion to convert a long to an int. The output is:
(int) 9223372036854775807 = -1

because an overflow occurs. Cast expressions permit the use of both implicit and explicit conversions.

1.2.3 Array types
Arrays may be single-dimensional or multi-dimensional. Both ” rectangular„ and ” jagged„ arrays are supported.

Single-dimensional arrays are the most common type, so this is a good starting point. The example
using System;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 7

class Test
{
 static void Main() {
 int[] arr = new int[5];

 for (int i = 0; i < arr.Length; i++)
 arr[i] = i * i;

 for (int i = 0; i < arr.Length; i++)
 Console.WriteLine("arr[{0}] = {1}", i, arr[i]);
 }
}

creates a single-dimensional array of int values, initializes the array elements, and then prints each of them out.
The program output is:

arr[0] = 0
arr[1] = 1
arr[2] = 4
arr[3] = 9
arr[4] = 16

The type int[] used in the previous example is an array type. Array types are written using a non-array-type
followed by one or more rank specifiers. The example

class Test
{
 static void Main() {
 int[] a1; // single-dimensional array of int
 int[,] a2; // 2-dimensional array of int
 int[,,] a3; // 3-dimensional array of int

 int[][] j2; // "jagged" array: array of (array of int)
 int[][][] j3; // array of (array of (array of int))
 }
}

shows a variety of local variable declarations that use array types with int as the element type.

Array types are reference types, and so the declaration of an array variable merely sets aside space for the
reference to the array. Array instances are actually created via array initializers and array creation expressions.
The example

class Test
{
 static void Main() {
 int[] a1 = new int[] {1, 2, 3};
 int[,] a2 = new int[,] {{1, 2, 3}, {4, 5, 6}};
 int[,,] a3 = new int[10, 20, 30];

 int[][] j2 = new int[3][];
 j2[0] = new int[] {1, 2, 3};
 j2[1] = new int[] {1, 2, 3, 4, 5, 6};
 j2[2] = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9};
 }
}

shows a variety of array creation expressions. The variables a1, a2 and a3 denote rectangular arrays, and the
variable j2 denotes a jagged array. It should be no surprise that these terms are based on the shapes of the
arrays. Rectangular arrays always have a rectangular shape. Given the length of each dimension of the array, its
rectangular shape is clear. For example, the lengths of a3§s three dimensions are 10, 20, and 30 respectively,
and it is easy to see that this array contains 10*20*30 elements.

In contrast, the variable j2 denotes a ” jagged„ array, or an ” array of arrays„ . Specifically, j2 denotes an array of
an array of int, or a single-dimensional array of type int[]. Each of these int[] variables can be initialized

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

8 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

individually, and this allows the array to take on a jagged shape. The example gives each of the int[] arrays a
different length. Specifically, the length of j2[0] is 3, the length of j2[1] is 6, and the length of j2[2] is 9.

The element type and shape of an array’ including whether it is jagged or rectangular, and the number of
dimensions it has’ are part of its type. On the other hand, the size of the array’ as represented by the length of
each of its dimensions’ is not part of an array§s type. This split is made clear in the language syntax, as the
length of each dimension is specified in the array creation expression rather than in the array type. For instance
the declaration

int[,,] a3 = new int[10, 20, 30];

has an array type of int[,,] and an array creation expression of new int[10, 20, 30].

For local variable and field declarations, a shorthand form is permitted so that it is not necessary to re -state the
array type. For instance, the example

int[] a1 = new int[] {1, 2, 3};

can be shortened to
int[] a1 = {1, 2, 3};

without any change in program semantics.

The context in which an array initializer such as {1, 2, 3} is used determines the type of the array being
initialized. The example

class Test
{
 static void Main() {
 short[] a = {1, 2, 3};
 int[] b = {1, 2, 3};
 long[] c = {1, 2, 3};

 }
}

shows that the same array initializer syntax can be used for several different array types. Because context is
required to determine the type of an array initializer, it is not possible to use an array initializer in an expression
context without explicitly stating the type of the array.

1.2.4 Type system unification
C# provides a ” unified type system„ . All types’ including value types’ derive from the type object. It is
possible to call object methods on any value, even values of ” primitive„ types such as int. The example

using System;

class Test
{
 static void Main() {
 Console.WriteLine(3.ToString());
 }
}

calls the object-defined ToString method on an integer literal.

The example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 9

class Test
{
 static void Main() {
 int i = 123;
 object o = i; // boxing
 int j = (int) o; // unboxing
 }
}

is more interesting. An int value can be converted to object and back again to int. This example shows both
boxing and unboxing. When a variable of a value type needs to be converted to a reference type, an object box
is allocated to hold the value, and the value is copied into the box. Unboxing is just the opposite. When an
object box is cast back to its original value type, the value is copied out of the box and into the appropriate
storage location.

This type system unification provides value types with the benefits of object -ness without introducing
unnecessary overhead. For programs that don§t need int values to act like objects, int values are simply 32-bit
values. For programs that need int values to behave like objects, this capability is available on demand. This
ability to treat value types as objects bridges the gap between value types and reference types that exists in most
languages. For example, a Stack class can provide Push and Pop methods that take and return object values.

public class Stack
{
 public object Pop() {...}

 public void Push(object o) {...}
}

Because C# has a unified type system, the Stack class can be used with elements of any type, including value
types like int.

1.3 Variables and parameters
Variables represent storage locations. Every variable has a type that determines what values can be stored in the
variable. Local variables are variables that are declared in methods, properties, or indexers. A local variable is
defined by specifying a type name and a declarator that specifies the variable name and an optional initial value,
as in:

int a;
int b = 1;

but it is also possible for a local variable declaration to include multiple declarators. The declarations of a and b
can be rewritten as:

int a, b = 1;

A variable must be assigned before its value can be obtained. The example
class Test
{
 static void Main() {
 int a;
 int b = 1;
 int c = a + b;
 ...
 }
}

is invalid because it attempts to use the variable a before it is assigned a value. The rules governing definite
assignment are defined in −5.3.

A field (−10.4) is a variable that is associated with a class or struct, or an instance of a class or struct. A field
declared with the static modifier defines a static variable, and a field declared without this modifier defines

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

10 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

an instance variable. A static field is associated with a type, whereas an instance variable is associated with an
instance. The example

using System.Data;

class Employee
{
 private static DataSet ds;

 public string Name;
 public decimal Salary;

 ...
}

shows an Employee class that has a private static variable and two public instance variables.

Formal parameter declarations also define variables. There are four kinds of parameters: value parameters,
reference parameters, output parameters, and parameter arrays.

A value parameter is used for ” in„ parameter passing, in which the value of an argument is passed into a
method, and modifications of the parameter do not impact the original argument. A value parameter refers to its
own variable, one that is distinct from the corresponding argument. This variable is initialized by copying the
value of the corresponding argument. The example

using System;

class Test {
 static void F(int p) {
 Console.WriteLine("p = {0}", p);
 p++;
 }

 static void Main() {
 int a = 1;
 Console.WriteLine("pre: a = {0}", a);
 F(a);
 Console.WriteLine("post: a = {0}", a);
 }
}

shows a method F that has a value parameter named p. The example produces the output:
pre: a = 1
p = 1
post: a = 1

even though the value parameter p is modified.

A reference parameter is used for ” by reference„ parameter passing, in which the parameter acts as an alias for
a caller-provided argument. A reference parameter does not itself define a variable, but rather refers to the
variable of the corresponding argument. Modifications of a reference impact the corresponding argument. A
reference parameter is declared with a ref modifier. The example

using System;

class Test {
 static void Swap(ref int a, ref int b) {
 int t = a;
 a = b;
 b = t;
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 11

 static void Main() {
 int x = 1;
 int y = 2;

 Console.WriteLine("pre: x = {0}, y = {1}", x, y);
 Swap(ref x, ref y);
 Console.WriteLine("post: x = {0}, y = {1}", x, y);
 }
}

shows a Swap method that has two reference parameters. The output of the program is:
pre: x = 1, y = 2
post: x = 2, y = 1

The ref keyword must be used in both the declaration of the formal parameter and in uses of it. The use of ref
at the call site calls special attention to the parameter so that a developer reading the code will understand that
the value of the argument could change as a result of the call.

An output parameter is similar to a reference parameter, except that the initial value of the caller -provided
argument is unimportant. An output parameter is declared with an out modifier. The example

using System;

class Test {
 static void Divide(int a, int b, out int result, out int remainder) {
 result = a / b;
 remainder = a % b;
 }

 static void Main() {
 for (int i = 1; i < 10; i++)
 for (int j = 1; j < 10; j++) {
 int ans, r;
 Divide(i, j, out ans, out r);
 Console.WriteLine("{0} / {1} = {2}r{3}", i, j, ans, r);
 }
 }
}

shows a Divide method that includes two output parameters’ one for the result of the division and another for
the remainder.

For value, reference, and output parameters, there is a one-to-one correspondence between caller-provided
arguments and the parameters used to represent them. A parameter array enables a many-to-one relationship:
many arguments can be represented by a single parameter array. In other words, parameter arrays enable
variable length argument lists.

A parameter array is declared with a params modifier. There can be only one parameter array for a given
method, and it must be the right-most parameter. The type of a parameter array is always a single dimensional
array type. A caller can either pass a single argument of this array type, or any number of arguments of the
element type of this array type. For instance, the example

using System;

class Test
{
 static void F(params int[] args) {
 Console.WriteLine("# of arguments: {0}", args.Length);
 for (int i = 0; i < args.Length; i++)
 Console.WriteLine("\targs[{0}] = {1}", i, args[i]);
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

12 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 static void Main() {
 F();
 F(1);
 F(1, 2);
 F(1, 2, 3);
 F(new int[] {1, 2, 3, 4});
 }
}

shows a method F that takes a variable number of int arguments, and several invocations of this method. The
output is:

of arguments: 0
of arguments: 1
 args[0] = 1
of arguments: 2
 args[0] = 1
 args[1] = 2
of arguments: 3
 args[0] = 1
 args[1] = 2
 args[2] = 3
of arguments: 4
 args[0] = 1
 args[1] = 2
 args[2] = 3
 args[3] = 4

Most of the examples presented in this introduction use the WriteLine method of the Console class. The
argument substitution behavior of this method, as exhibited in the example

int a = 1, b = 2;
Console.WriteLine("a = {0}, b = {1}", a, b);

is accomplished using a parameter array. The WriteLine method provides several overloaded methods for the
common cases in which a small number of arguments are passed, and one method that uses a parameter array.

namespace System
{
 public class Console
 {
 public static void WriteLine(string s) {...}

 public static void WriteLine(string s, object a) {...}

 public static void WriteLine(string s, object a, object b) {...}

 ...

 public static void WriteLine(string s, params object[] args) {...}
 }
}

1.4 Automatic memory management
Manual memory management requires developers to manage the allocation and de-allocation of blocks of
memory. Manual memory management is both time-consuming and difficult. In C#, automatic memory
management is provided so that developers are freed from this burdensome task. In the vast majority of cases,
automatic memory management increases code quality and enhances developer productivity without negatively
impacting either expressiveness or performance.

The example
using System;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 13

public class Stack
{
 private Node first = null;

 public bool Empty {
 get {
 return (first == null);
 }
 }

 public object Pop() {
 if (first == null)
 throw new Exception("Can't Pop from an empty Stack.");
 else {
 object temp = first.Value;
 first = first.Next;
 return temp;
 }
 }

 public void Push(object o) {
 first = new Node(o, first);
 }

 class Node
 {
 public Node Next;

 public object Value;

 public Node(object value): this(value, null) {}

 public Node(object value, Node next) {
 Next = next;
 Value = value;
 }
 }
}

shows a Stack class implemented as a linked list of Node instances. Node instances are created in the Push
method and are garbage collected when no longer needed. A Node instance becomes eligible for garbage
collection when it is no longer possible for any code to access it. For instance, when an item is removed from
the Stack, the associated Node instance becomes eligible for garbage collection.

The example
class Test
{
 static void Main() {
 Stack s = new Stack();

 for (int i = 0; i < 10; i++)
 s.Push(i);

 s = null;
 }
}

shows a test program that uses the Stack class. A Stack is created and initialized with 10 elements, and then
assigned the value null. Once the variable s is assigned null, the Stack and the associated 10 Node instances
become eligible for garbage collection. The garbage collector is permitted to clean up immediately, but is not
required to do so.

The garbage collector underlying C# may work by moving objects around in memory, but this motion is
invisible to most C# developers. For developers who are generally content with automatic memory management
but sometimes need fine-grained control or that extra iota of performance, C# provides the ability to write

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

14 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

” unsafe„ code. Such code can deal directly with pointer types and object addresses. However, C# requires the
programmer to fix objects to temporarily prevent the garbage collector from moving them.

This ” unsafe„ code feature is in fact a ” safe„ feature from the perspective of both developers and users. Unsafe
code must be clearly marked in the code with the modifier unsafe, so developers can't possibly use unsafe
language features accidentally, and the compiler and the execution engine work together to ensure that unsafe
code cannot masquerade as safe code. These restrictions limit the use of unsafe code to situations in which the
code is trusted.

The example
using System;

class Test
{
 unsafe static void WriteLocations(byte[] arr) {
 fixed (byte *p_arr = arr) {
 byte *p_elem = p_arr;
 for (int i = 0; i < arr.Length; i++) {
 byte value = *p_elem;
 string addr = int.Format((int) p_elem, "X");
 Console.WriteLine("arr[{0}] at 0x{1} is {2}", i, addr, value);
 p_elem++;
 }
 }
 }

 static void Main() {
 byte[] arr = new byte[] {1, 2, 3, 4, 5};
 WriteLocations(arr);
 }
}

shows an unsafe method named WriteLocations that fixes an array instance and uses pointer manipulation to
iterate over the elements. The index, value, and location of each array element are written to the console. One
possible output of the program is:

arr[0] at 0x8E0360 is 1
arr[1] at 0x8E0361 is 2
arr[2] at 0x8E0362 is 3
arr[3] at 0x8E0363 is 4
arr[4] at 0x8E0364 is 5

but of course the exact memory locations may be different in different executions of the program.

1.5 Expressions
C# includes unary operators, binary operators, and one ternary operator. The following table summarizes the
operators, listing them in order of precedence from highest to lowest:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 15

Section Category Operators

7.5 Primary x.y f(x) a[x] x++ x-- new

typeof checked unchecked

7.6 Unary + - ! ~ ++x --x (T)x

7.7 Multiplicative * / %

7.7 Additive + -

7.8 Shift << >>

7.9 Relational and
type testing

< > <= >= is as

7.9 Equality == !=

7.10 Logical AND &

7.10 Logical XOR ^

7.10 Logical OR |

7.11 Conditional AND &&

7.11 Conditional OR ||

7.12 Conditional ?:

7.13 Assignment = *= /= %= += -= <<= >>= &= ^= |=

When an expression contains multiple operators, the precedence of the operators controls the order in which the
individual operators are evaluated. For example, the expression x + y * z is evaluated as x + (y * z) because
the * operator has higher precedence than the + operator.

When an operand occurs between two operators with the same precedence, the associativity of the operators
controls the order in which the operations are performed:

• Except for the assignment operators, all binary operators are left-associative, meaning that operations are
performed from left to right. For example, x + y + z is evaluated as (x + y) + z.

• The assignment operators and the conditional operator (?:) are right-associative, meaning that operations
are performed from right to left. For example, x = y = z is evaluated as x = (y = z).

Precedence and associativity can be controlled using parentheses. For example, x + y * z first multiplies y by z
and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z.

1.6 Statements
C# borrows most of its statements directly from C and C++, though there are some noteworthy additions and
modifications. The table below lists the kinds of statements that can be used, and provides an example for each.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

16 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

Statement Example

Statement lists and block
statements

static void Main() {
 F();
 G();
 {
 H();
 I();
 }
}

Labeled statements and goto
statements

static void Main(string[] args) {
 if (args.Length == 0)
 goto done;
 Console.WriteLine(args.Length);

done:
 Console.WriteLine("Done");
}

Local constant declarations static void Main() {
 const float pi = 3.14f;
 const int r = 123;
 Console.WriteLine(pi * r * r);
}

Local variable declarations static void Main() {
 int a;
 int b = 2, c = 3;
 a = 1;
 Console.WriteLine(a + b + c);
}

Expression statements static int F(int a, int b) {
 return a + b;
}

static void Main() {
 F(1, 2); // Expression statement
}

if statements static void Main(string[] args) {
 if (args.Length == 0)
 Console.WriteLine("No args");
 else
 Console.WriteLine("Args");
}

switch statements static void Main(string[] args) {
 switch (args.Length) {
 case 0:
 Console.WriteLine("No args");
 break;
 case 1:
 Console.WriteLine("One arg ");
 break;
 default:
 int n = args.Length;
 Console.WriteLine("{0} args", n);
 break;
 }
}

while statements static void Main(string[] args) {
 int i = 0;
 while (i < args.Length) {
 Console.WriteLine(args[i]);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 17

 i++;
 }
}

do statements static void Main() {
 string s;
 do { s = Console.ReadLine(); }
 while (s != "Exit");
}

for statements static void Main(string[] args) {
 for (int i = 0; i < args.length; i++)
 Console.WriteLine(args[i]);
}

foreach statements static void Main(string[] args) {
 foreach (string s in args)
 Console.WriteLine(s);
}

break statements static void Main(string[] args) {
 int i = 0;
 while (true) {
 if (i == args.Length)
 break;
 Console.WriteLine(args[i++]);
 }
}

continue statements static void Main(string[] args) {
 int i = 0;
 while (true) {
 Console.WriteLine(args[i++]);
 if (i < args.Length)
 continue;
 break;
 }
}

return statements static int F(int a, int b) {
 return a + b;
}

static void Main() {
 Console.WriteLine(F(1, 2));
 return;
}

throw statements and try
statements

static int F(int a, int b) {
 if (b == 0)
 throw new Exception("Divide by zero");
 return a / b;
}

static void Main() {
 try {
 Console.WriteLine(F(5, 0));
 }
 catch(Exception e) {
 Console.WriteLine("Error");
 }
}

checked and unchecked
statements

static void Main() {
 int x = Int32.MaxValue;

 Console.WriteLine(x + 1); // Overflow

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

18 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 checked {
 Console.WriteLine(x + 1); // Exception
 }

 unchecked {
 Console.WriteLine(x + 1); // Overflow
 }
}

lock statements static void Main() {
 A a = ...;
 lock(a) {
 a.P = a.P + 1;
 }
}

using statements static void Main() {
 using (Resource r = new Resource()) {
 r.F();
 }
}

1.7 Classes
Class declarations define new reference types. A class can inherit from another class, and can implement
interfaces.

Class members can include constants, fields, methods, properties, indexers, events, operators, instance
constructors, static constructors, destructors, and nested type declarations. Each member has an associated
accessibility, which controls the regions of program text that are able to access the member. There are five
possible forms of accessibility. These are summarized in the table below.

Form Intuitive meaning
public Access not limited
protected Access limited to the containing class or types derived from the containing class
internal Access limited to this program
protected
internal

Access limited to this program or types derived from the containing class

private Access limited to the containing type

The example

using System;

class MyClass
{
 public MyClass() {
 Console.WriteLine("Instance constructor");
 }

 public MyClass(int value) {
 MyField = value;
 Console.WriteLine("Instance constructor");
 }

 ~MyClass() {
 Console.WriteLine("Destructor");
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 19

 public const int MyConst = 12;

 public int MyField = 34;

 public void MyMethod(){
 Console.WriteLine("MyClass.MyMethod");
 }

 public int MyProperty {
 get {
 return MyField;
 }

 set {
 MyField = value;
 }
 }

 public int this[int index] {
 get {
 return 0;
 }

 set {
 Console.WriteLine("this[{0}] = {1}", index, value);
 }
 }

 public event EventHandler MyEvent;

 public static MyClass operator+(MyClass a, MyClass b) {
 return new MyClass(a.MyField + b.MyField);
 }

 internal class MyNestedClass
 {}
}

shows a class that contains each kind of member. The example
class Test
{
 static void Main() {
 // Instance constructor usage
 MyClass a = new MyClass();
 MyClass b = new MyClass(123);

 // Constant usage
 Console.WriteLine("MyConst = {0}", MyClass.MyConst);

 // Field usage
 a.MyField++;
 Console.WriteLine("a.MyField = {0}", a.MyField);

 // Method usage
 a.MyMethod();

 // Property usage
 a.MyProperty++;
 Console.WriteLine("a.MyProperty = {0}", a.MyProperty);

 // Indexer usage
 a[3] = a[1] = a[2];
 Console.WriteLine("a[3] = {0}", a[3]);

 // Event usage
 a.MyEvent += new EventHandler(MyHandler);

 // Overloaded operator usage
 MyClass c = a + b;
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

20 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 static void MyHandler(object sender, EventArgs e) {
 Console.WriteLine("Test.MyHandler");
 }

 internal class MyNestedClass
 {}
}

shows uses of these members.

1.7.1 Constants
A constant is a class member that represents a constant value: a value that can be computed at compile -time.
Constants are permitted to depend on other constants within the same program as long as there are no circular
dependencies. The rules governing constant expressions are defined in constant expression −7.15. The example

class Constants
{
 public const int A = 1;
 public const int B = A + 1;
}

shows a class named Constants that has two public constants.

Even though constants are considered static members, a constant declaration neither requires nor allows the
static modifier. Constants can be accessed through the class, as in

class Test
{
 static void Main() {
 Console.WriteLine("{0}, {1}", Constants.A, Constants.B);
 }
}

which prints out the values of Constants.A and Constants.B.

1.7.2 Fields
A field is a member that represents a variable associated with an object or class. The example

class Color
{
 internal ushort redPart;
 internal ushort bluePart;
 internal ushort greenPart;

 public Color(ushort red, ushort blue, ushort green) {
 redPart = red;
 bluePart = blue;
 greenPart = green;
 }

 ...
}

shows a Color class that has internal instance fields named redPart, bluePart, and greenPart. Fields can
also be static, as shown in the example

class Color
{
 public static Color Red = new Color(0xFF, 0, 0);
 public static Color Blue = new Color(0, 0xFF, 0);
 public static Color Green = new Color(0, 0, 0xFF);
 public static Color White = new Color(0xFF, 0xFF, 0xFF);
 ...
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 21

which shows static fields for Red, Blue, Green, and White.

Static fields are not a perfect match for this scenario. The fields are initialized at some point before they are
used, but after this initialization there is nothing to stop a client from changing them. Such a modification could
cause unpredictable errors in other programs that use Color and assume that the values do not change.
Readonly fields can be used to prevent such problems. Assignments to a readonly field can only occur as part of
the declaration, or in an instance or static constructor in the same class. A static readonly field can be assigned in
a static constructor, and a non-static readonly field can be assigned in an instance constructor. Thus, the Color
class can be enhanced by adding the readonly modifier to the static fields:

class Color
{
 internal ushort redPart;
 internal ushort bluePart;
 internal ushort greenPart;

 public Color(ushort red, ushort blue, ushort green) {
 redPart = red;
 bluePart = blue;
 greenPart = green;
 }

 public static readonly Color Red = new Color(0xFF, 0, 0);
 public static readonly Color Blue = new Color(0, 0xFF, 0);
 public static readonly Color Green = new Color(0, 0, 0xFF);
 public static readonly Color White = new Color(0xFF, 0xFF, 0xFF);
}

1.7.3 Methods
A method is a member that implements a computation or action that can be performed by an object or class.
Methods have a list of formal parameters (which may be empty), a return value (or void), and are either static
or non-static. Static methods are accessed through the class. Non-static methods, which are also called instance
methods, are accessed through instances of the class. The example

using System;

public class Stack
{
 public static Stack Clone(Stack s) {...}

 public static Stack Flip(Stack s) {...}

 public object Pop() {...}

 public void Push(object o) {...}

 public override string ToString() {...}

 ...
}

class Test
{
 static void Main() {
 Stack s = new Stack();
 for (int i = 1; i < 10; i++)
 s.Push(i);

 Stack flipped = Stack.Flip(s);

 Stack cloned = Stack.Clone(s);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

22 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 Console.WriteLine("Original stack: " + s.ToString());
 Console.WriteLine("Flipped stack: " + flipped.ToString());
 Console.WriteLine("Cloned stack: " + cloned.ToString());
 }
}

shows a Stack that has several static methods (Clone and Flip) and several instance methods (Push, Pop,
and ToString).

Methods can be overloaded, which means that multiple methods may have the same name so long as they have
unique signatures. The signature of a method consists of the name of the method and the number, modifiers, and
types of its formal parameters. The signature of a method does not include the return type. The example

class Test
{
 static void F() {
 Console.WriteLine("F()");
 }

 static void F(object o) {
 Console.WriteLine("F(object)");
 }

 static void F(int value) {
 Console.WriteLine("F(int)");
 }

 static void F(ref int value) {
 Console.WriteLine("F(ref int)");
 }

 static void F(out int value) {
 Console.WriteLine("F(out int)");
 value = 20;
 }

 static void F(int a, int b) {
 Console.WriteLine("F(int, int)");
 }

 static void F(int[] values) {
 Console.WriteLine("F(int[])");
 }

 static void Main() {
 F();
 F(1);
 int i = 10;
 F(ref i);
 F(out i);
 F((object)1);
 F(1, 2);
 F(new int[] {1, 2, 3});
 }
}

shows a class with a number of methods named F. The output of the program is
F()
F(int)
F(ref int)
F(out int)
F(object)
F(int, int)
F(int[])

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 23

1.7.4 Properties
A property is a member that provides access to a characteristic of an object or a class. Examples of properties
include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on.
Properties are a natural extension of fields. Both are named members with associated types, and the syntax for
accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations.
Instead, properties have accessors that specify the statements to be executed when their values are read or
written.

Properties are defined with property declarations. The first part of a property declaration looks quite similar to a
field declaration. The second part includes a get accessor and/or a set accessor. In the example below, the
Button class defines a Caption property.

public class Button
{
 private string caption;

 public string Caption {
 get {
 return caption;
 }

 set {
 caption = value;
 Repaint();
 }
 }
}

Properties that can be both read and written, such as Caption, include both get and set accessors. The get
accessor is called when the property§s value is read; the set accessor is called when the property§s value is
written. In a set accessor, the new value for the property is made available via an implicit parameter named
value.

The declaration of properties is real value of properties is seen when they are used. For example, the Caption
property can be read and written in the same way that fields can be read and written:

Button b = new Button();

b.Caption = "ABC"; // set; causes repaint

string s = b.Caption; // get

b.Caption += "DEF’; // get & set; causes repaint

1.7.5 Events
An event is a member that enables an object or class to provide notifications. A class defines an event by
providing an event declaration, which resembles a field declaration, though with an added event keyword, and
an optional set of event accessors. The type of this declaration must be a delegate type.

An instance of a delegate type encapsulates one or more callable entities. For instance methods, a callable entity
consists of an instance and a method on that instance. For static methods, a callable entity consists of just a
method. Given a delegate instance and an appropriate set of arguments, one can invoke all of that delegate
instance§s methods with that set of arguments.

In the example
public delegate void EventHandler(object sender, System.EventArgs e);

public class Button
{
 public event EventHandler Click;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

24 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 public void Reset() {
 Click = null;
 }
}

the Button class defines a Click event of type EventHandler. Inside the Button class, the Click member
corresponds exactly to a private field of type EventHandler. However, outside the Button class, the Click
member can only be used on the left hand side of the += and -= operators. The += operator adds a handler for
the event, and the -= operator removes a handler for the event. The example

using System;

public class Form1
{
 public Form1() {
 // Add Button1_Click as an event handler for Button1–s Click event
 Button1.Click += new EventHandler(Button1_Click);
 }

 Button Button1 = new Button();

 void Button1_Click(object sender, EventArgs e) {
 Console.WriteLine("Button1 was clicked!");
 }

 public void Disconnect() {
 Button1.Click -= new EventHandler(Button1_Click);
 }
}

shows a Form1 class that adds Button1_Click as an event handler for Button1§s Click event. In the
Disconnect method, the event handler is removed.

For a simple event declaration such as
public event EventHandler Click;

the compiler automatically provides the implementation underlying the += and -= operators.

An implementer who wants more control can get it by explicitly providing add and remove accessors. For
example, the Button class could be rewritten as follows:

public class Button
{
 private EventHandler handler;

 public event EventHandler Click {

 add { handler += value; }

 remove { handler -= value; }
 }
}

This change has no effect on client code, but allows the Button class more implementation flexibility. For
example, the event handler for Click need not be represented by a field.

1.7.6 Operators
An operator is a member that defines the meaning of an expression operator that can be applied to instances of
the class. There are three kinds of operators that can be defined: unary operators, binary operators, and
conversion operators.

The following example defines a Digit type that represents decimal digits’ integral values between 0 and 9.
using System;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 25

public struct Digit
{
 byte value;

 public Digit(byte value) {
 if (value < 0 || value > 9) throw new ArgumentException();
 this.value = value;
 }

 public Digit(int value): this((byte) value) {}

 public static implicit operator byte(Digit d) {
 return d.value;
 }

 public static explicit operator Digit(byte b) {
 return new Digit(b);
 }

 public static Digit operator+(Digit a, Digit b) {
 return new Digit(a.value + b.value);
 }

 public static Digit operator-(Digit a, Digit b) {
 return new Digit(a.value - b.value);
 }

 public static bool operator==(Digit a, Digit b) {
 return a.value == b.value;
 }

 public static bool operator!=(Digit a, Digit b) {
 return a.value != b.value;
 }

 public override bool Equals(object value) {
 return this == (Digit) value;
 }

 public override int GetHashCode() {
 return value.GetHashCode();
 }

 public override string ToString() {
 return value.ToString();
 }
}

class Test
{
 static void Main() {
 Digit a = (Digit) 5;
 Digit b = (Digit) 3;
 Digit plus = a + b;
 Digit minus = a “ b;
 bool equals = (a == b);
 Console.WriteLine("{0} + {1} = {2}", a, b, plus);
 Console.WriteLine("{0} - {1} = {2}", a, b, minus);
 Console.WriteLine("{0} == {1} = {2}", a, b, equals);
 }
}

The Digit type defines the following operators:

• An implicit conversion operator from Digit to byte.

• An explicit conversion operator from byte to Digit.

• An addition operator that adds two Digit values and returns a Digit value.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

26 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• A subtraction operator that subtracts one Digit value from another, and returns a Digit value.

• The equality (==) and inequality (!=) operators, which compare two Digit values.

1.7.7 Indexers
An indexer is a member that enables an object to be indexed in the same way as an array. Whereas properties
enable field-like access, indexers enable array-like access.

As an example, consider the Stack class presented earlier. This class might want to expose array-like access so
that it is possible to inspect or alter the items on the stack without performing unnecessary Push and Pop
operations. The Stack is implemented as a linked list, but wants to provide the convenience of array access.

Indexer declarations are similar to property declarations, with the main differences being that indexers are
nameless (the ” name„ used in the declaration is this, since this is being indexed) and that indexers include
indexing parameters. The indexing parameters are provided between square brackets. The example

using System;

public class Stack
{
 private Node GetNode(int index) {
 Node temp = first;
 while (index > 0) {
 temp = temp.Next;
 index--;
 }
 return temp;
 }

 public object this[int index] {
 get {
 if (!ValidIndex(index))
 throw new Exception("Index out of range.");
 else
 return GetNode(index).Value;
 }

 set {
 if (!ValidIndex(index))
 throw new Exception("Index out of range.");
 else
 GetNode(index).Value = value;
 }
 }

 ...
}

class Test
{
 static void Main() {
 Stack s = new Stack();

 s.Push(1);
 s.Push(2);
 s.Push(3);

 s[0] = 33; // Changes the top item from 3 to 33
 s[1] = 22; // Changes the middle item from 2 to 22
 s[2] = 11; // Changes the bottom item from 1 to 11
 }
}

shows an indexer for the Stack class.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 27

1.7.8 Instance constructors
An instance constructor is a member that implements the actions required to initialize an instance of a class.

The example
using System;

class Point
{
 public double x, y;

 public Point() {
 this.x = 0;
 this.y = 0;
 }

 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public static double Distance(Point a, Point b) {
 double xdiff = a.x “ b.x;
 double ydiff = a.y “ b.y;
 return Math.Sqrt(xdiff * xdiff + ydiff * ydiff);
 }

 public override string ToString() {
 return string.Format("({0}, {1})", x, y);
 }
}

class Test
{
 static void Main() {
 Point a = new Point();
 Point b = new Point(3, 4);
 double d = Point.Distance(a, b);
 Console.WriteLine("Distance from {0} to {1} is {2}", a, b, d);
 }
}

shows a Point class that provides two public instance constructors. One instance constructor takes no
arguments, and the other takes two double arguments.

If no instance constructor is supplied for a class, then an empty instance constructor with no parameters is
automatically provided.

1.7.9 Destructors
A destructor is a member that implements the actions required to destruct an instance of a class. Destructors
cannot have parameters, cannot have accessibility modifiers, and cannot be called explicitly. The destructor for
an instance is called automatically during garbage collection.

The example
using System;

class Point
{
 public double x, y;

 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

28 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 ~Point() {
 Console.WriteLine("Destructed {0}", this);
 }

 public override string ToString() {
 return string.Format("({0}, {1})", x, y);
 }
}

shows a Point class with a destructor.

1.7.10 Static constructors
A static constructor is a member that implements the actions required to initialize a class. Static constructors
cannot have parameters, cannot have accessibility modifiers, and cannot be called explicitly. The static
constructor for a class is called automatically.

The example
using System.Data;

class Employee
{
 private static DataSet ds;

 static Employee() {
 ds = new DataSet(...);
 }

 public string Name;
 public decimal Salary;

 ...
}

shows an Employee class with a static constructor that initializes a static field.

1.7.11 Inheritance
Classes support single inheritance, and the type object is the ultimate base class for all classes.

The classes shown in earlier examples all implicitly derive from object. The example
class A
{
 public void F() { Console.WriteLine("A.F"); }
}

shows a class A that implicitly derives from object. The example
class B: A
{
 public void G() { Console.WriteLine("B.G"); }
}

class Test
{
 static void Main() {
 B b = new B();
 b.F(); // Inherited from A
 b.G(); // Introduced in B

 A a = b; // Treat a B as an A
 a.F();
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 29

shows a class B that derives from A. The class B inherits A§s F method, and introduces a G method of its own.

Methods, properties, and indexers can be virtual, which means that their implementation can be overridden in
derived classes. The example

using System;

class A
{
 public virtual void F() { Console.WriteLine("A.F"); }
}

class B: A
{
 public override void F() {
 base.F();
 Console.WriteLine("B.F");
 }
}

class Test
{
 static void Main() {
 B b = new B();
 b.F();

 A a = b;
 a.F();
 }
}

shows a class A with a virtual method F, and a class B that overrides F. The overriding method in B contains a
call, base.F(), which calls the overridden method in A.

A class can indicate that it is incomplete, and is intended only as a base class for other classes, by including the
abstract modifier. Such a class is called an abstract class. An abstract class can specify abstract members’
members that a non-abstract derived class must implement. The example

using System;

abstract class A
{
 public abstract void F();
}

class B: A
{
 public override void F() { Console.WriteLine("B.F"); }
}

class Test
{
 static void Main() {
 B b = new B();
 b.F();

 A a = b;
 a.F();
 }
}

introduces an abstract method F in the abstract class A. The non-abstract class B provides an implementation for
this method.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

30 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

1.8 Structs
The list of similarities between classes and structs is long’ structs can implement interfaces, and can have the
same kinds of members as classes. Structs differ from classes in several important ways, however: structs are
value types rather than reference types, and inheritance is not supported for structs. Struct values are st ored
either ” on the stack„ or ” in-line„ . Careful programmers can sometimes enhance performance through judicious
use of structs.

For example, the use of a struct rather than a class for a Point can make a large difference in the number of
memory allocations performed by a program. The program below creates and initializes an array of 100 points.
With Point implemented as a class, the program instantiates 101 separate objects’ one for the array and one
each for the 100 elements.

class Point
{
 public int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

class Test
{
 static void Main() {
 Point[] points = new Point[100];
 for (int i = 0; i < 100; i++)
 points[i] = new Point(i, i*i);
 }
}

If Point is instead implemented as a struct, as in
struct Point
{
 public int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

then the test program instantiates just one object’ the one for the array. The Point instances are allocated in-
line within the array. This optimization can be misused. Using structs instead of classes can also make a
program slower and fatter, as passing a struct instance as a value parameter causes a copy of the struct to be
created. There is no substitute for careful data structure and algorithm design.

1.9 Interfaces
An interface defines a contract. A class or struct that implements an interface must adhere to its contract.
Interfaces can contain methods, properties, indexers, and events as members.

The example
interface IExample
{
 string this[int index] { get; set; }

 event EventHandler E;

 void F(int value);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 31

 string P { get; set; }
}

public delegate void EventHandler(object sender, EventArgs e);

shows an interface that contains an indexer, an event E, a method F, and a property P.

Interfaces may employ multiple inheritance. In the example
interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

interface IListBox: IControl
{
 void SetItems(string[] items);
}

interface IComboBox: ITextBox, IListBox {}

the interface IComboBox inherits from both ITextBox and IListBox.

Classes and structs can implement multiple interfaces. In the example
interface IDataBound
{
 void Bind(Binder b);
}

public class EditBox: Control, IControl, IDataBound
{
 public void Paint() {...}

 public void Bind(Binder b) {...}
}

the class EditBox derives from the class Control and implements both IControl and IDataBound.

In previous example, the Paint method from the IControl interface and the Bind method from IDataBound
interface are implemented using public members on the EditBox class. C# provides an alternative way of
implementing these methods that allows the implementing class to avoid having these members be public.
Interface members can be implemented using a qualified name. For example, the EditBox class could instead
be implemented by providing IControl.Paint and IDataBound.Bind methods.

public class EditBox: IControl, IDataBound
{
 void IControl.Paint() {...}

 void IDataBound.Bind(Binder b) {...}
}

Interface members implemented in this way are called explicit interface members because each member
explicitly designates the interface member being implemented. Explicit interface members can only be called
via the interface. For example, the EditBox§s implementation of the Paint method can be called only by
casting to the IControl interface.

class Test
{
 static void Main() {
 EditBox editbox = new EditBox();
 editbox.Paint(); // error: no such method

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

32 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 IControl control = editbox;
 control.Paint(); // calls EditBox–s Paint implementation
 }
}

1.10 Delegates
Delegates enable scenarios that some other languages have addressed with function pointers. However, unlike
function pointers, delegates are object-oriented, type-safe, and secure.

A delegate declaration defines a class that is derived from the class System.Delegate. A delegate instance
encapsulates one or more methods, each of which is referred to as a callable entity. For instance methods, a
callable entity consists of an instance and a method on that instance. For static methods, a callable entity consists
of just a method. Given a delegate instance and an appropriate set of arguments, one can invoke all of that
delegate instance§s methods with that set of arguments.

An interesting and useful property of a delegate instance is that it does not know or care about the classes of the
methods it encapsulates; all that matters is that those methods be compatible (−15.1) with the delegate§s type.
This makes delegates perfectly suited for ” anonymous„ invocation. This is a powerful capability.

There are three steps in defining and using delegates: declaration, instantiation, and invocation. Delegates are
declared using delegate declaration syntax. The example

delegate void SimpleDelegate();

declares a delegate named SimpleDelegate that takes no arguments and returns void.

The example
class Test
{
 static void F() {
 System.Console.WriteLine("Test.F");
 }

 static void Main() {
 SimpleDelegate d = new SimpleDelegate(F);
 d();
 }
}

creates a SimpleDelegate instance and then immediately calls it.

There is not much point in instantiating a delegate for a method and then immediately calling it via the delegate,
as it would be simpler to call the method directly. Delegates really show their usefulness when their anonymity
is used. The example

void MultiCall(SimpleDelegate d, int count) {
 for (int i = 0; i < count; i++)
 d();
 }
}

shows a MultiCall method that repeatedly calls a SimpleDelegate. The MultiCall method doesn§t know
or care about the type of target method for the SimpleDelegate, what accessibility the method has, or whether
or not the method is static. All that matters is that the target method is compatible (−15.1) with
SimpleDelegate.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 33

1.11 Enums
An enum type declaration defines a type name for a related group of symbolic constants. Enums are used for
” multiple choice„ scenarios, in which a runtime decision is made from a fixed number of choices that are known
at compile-time.

The example
enum Color
{
 Red,
 Blue,
 Green
}

class Shape
{
 public void Fill(Color color) {
 switch(color) {
 case Color.Red:
 ...
 break;

 case Color.Blue:
 ...
 break;

 case Color.Green:
 ...
 break;

 default:
 break;
 }
 }
}

shows a Color enum and a method that uses this enum. The signature of the Fill method makes it clear that
the shape can be filled with one of the given colors.

The use of enums is superior to the use of integer constants’ as is common in languages without enums’
because the use of enums makes the code more readable and self-documenting. The self-documenting nature of
the code also makes it possible for the development tool to assist with code writing and other ” designer„
activities. For example, the use of Color rather than int for a parameter type enables smart code editors to
suggest Color values.

1.12 Namespaces and assemblies
The programs presented so far have stood on their own except for dependence on a few system-provided classes
such as the System.Console class. It is far more common for real-world programs to consist of several
different pieces. For example, a corporate application might depend on several different components, including
some developed internally and some purchased from independent software vendors.

Namespaces and assemblies enable this component-based system. Namespaces provide a logical organizational
system. Namespaces are used both as an ” internal„ organization system for a program, and as an ” external„
organization system’ a way of presenting program elements that are exposed to other programs.

Assemblies are used for physical packaging and deployment. An assembly acts as a container for types. An
assembly may contain types, the executable code used to implement these types, and references to other
assemblies.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

34 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

There are two main kinds of assemblies: applications and libraries. Applications have a main entry point and
usually have a file extension of .exe; libraries do not have a main entry point, and usually have a file extension
of .dll.

To demonstrate the use of namespaces and assemblies, this section revisits the ” hello, world„ program presented
earlier, and splits it into two pieces: a library that provides messages and a console application that displays
them.

The library will contain a single class named HelloMessage. The example
// HelloLibrary.cs

namespace Microsoft.CSharp.Introduction
{
 public class HelloMessage
 {
 public string Message {
 get {
 return "hello, world";
 }
 }
 }
}

shows the HelloMessage class in a namespace named Microsoft.CSharp.Introduction. The
HelloMessage class provides a read-only property named Message. Namespaces can nest, and the declaration

namespace Microsoft.CSharp.Introduction
{...}

is shorthand for several levels of namespace nesting:
namespace Microsoft
{
 namespace CSharp
 {
 namespace Introduction
 {...}
 }
}

The next step in the componentization of ” hello, world„ is to write a console application that uses the
HelloMessage class. The fully qualified name for the class’
Microsoft.CSharp.Introduction.HelloMessage’ could be used, but this name is quite long and
unwieldy. An easier way is to use a using namespace directive, which makes it possible to use all of the types in
a namespace without qualification. The example

// HelloApp.cs

using Microsoft.CSharp.Introduction;

class HelloApp
{
 static void Main() {
 HelloMessage m = new HelloMessage();
 System.Console.WriteLine(m.Message);
 }
}

shows a using namespace directive that refers to the Microsoft.CSharp.Introduction namespace. The
occurrences of HelloMessage are shorthand for Microsoft.CSharp.Introduction.HelloMessage.

C# also enables the definition and use of aliases. A using alias directive defines an alias for a type. Such aliases
can be useful in situation in which name collisions occur between two libraries, or when a small number of types
from a much larger namespace are being used. The example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 35

using MessageSource = Microsoft.CSharp.Introduction.HelloMessage;

shows a using alias directive that defines MessageSource as an alias for the HelloMessage class.

The code we have written can be compiled into a library containing the class HelloMessage and an application
containing the class HelloApp. The details of this compilation step might differ based on the compiler or tool
being used. Using the command-line compiler provided in Visual Studio 7.0, the correct invocations are

csc /target:library HelloLibrary.cs

which produces the class library HelloLibrary.dll and
csc /reference:HelloLibrary.dll HelloApp.cs

which produces the application HelloApp.exe.

1.13 Versioning
Versioning is the process of evolving a component over time in a compatible manner. A new version of a
component is source compatible with a previous version if code that depends on the previous version can, when
recompiled, work with the new version. In contrast, a new version of a component is binary compatible if a
program that depended on the old version can, without recompilation, work with the new version.

Most languages do not support binary compatibility at all, and many do little to facilitate source compatibility.
In fact, some languages contain flaws that make it impossible, in general, to evolve a class over time without
breaking at least some client code.

As an example, consider the situation of a base class author who ships a class named Base. In the first version,
Base contains no F method. A component named Derived derives from Base, and introduces an F. This
Derived class, along with the class Base that it depends on, is released to customers, who deploy to numerous
clients and servers.

// Author A
namespace A
{
 public class Base // version 1
 {
 }
}

// Author B
namespace B
{
 class Derived: A.Base
 {
 public virtual void F() {
 System.Console.WriteLine("Derived.F");
 }
 }
}

So far, so good. But now the versioning trouble begins. The author of Base produces a new version, and adds its
own F method.

// Author A
namespace A
{
 public class Base // version 2
 {
 public virtual void F() { // added in version 2
 System.Console.WriteLine("Base.F");
 }
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

36 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

This new version of Base should be both source and binary compatible with the initial version. (If it weren§t
possible to simply add a method then a base class could never evolve.) Unfortunately, the new F in Base makes
the meaning of Derived§s F unclear. Did Derived mean to override Base§s F? This seems unlikely, since
when Derived was compiled, Base did not even have an F! Further, if Derived§s F does override Base§s F,
then it must adhere to the contract specified by Base’ a contract that was unspecified when Derived was
written? In some cases, this is impossible. For example, the contract of Base§s F might require that overrides of
it always call the base. Derived§s F could not possibly adhere to such a contract.

C# addresses this versioning problem by requiring developers to clearly state their intent. In the origina l code
example, the code was clear, since Base did not even have an F. Clearly, Derived§s F is intended as a new
method rather than an override of a base method, since no base method named F exists.

// Author A
namespace A
{
 public class Base
 {
 }
}

// Author B
namespace B
{
 class Derived: A.Base
 {
 public virtual void F() {
 System.Console.WriteLine("Derived.F");
 }
 }
}

If Base adds an F and ships a new version, then the intent of a binary version of Derived is still clear’
Derived§s F is semantically unrelated, and should not be treated as an override.

However, when Derived is recompiled, the meaning is unclear’ the author of Derived may intend its F to
override Base§s F, or to hide it. Since the intent is unclear, the compiler produces a warning, and by default
makes Derived§s F hide Base§s F. This course of action duplicates the semantics for the case in which
Derived is not recompiled. The warning that is generated alerts Derived§s author to the presence of the F
method in Base.

If Derived§s F is semantically unrelated to Base§s F, then Derived§s author can express this intent’ and, in
effect, turn off the warning’ by using the new keyword in the declaration of F.

// Author A
namespace A
{
 public class Base // version 2
 {
 public virtual void F() { // added in version 2
 System.Console.WriteLine("Base.F");
 }
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 1 Introduction

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 37

// Author B
namespace B
{
 class Derived: A.Base // version 2a: new
 {
 new public virtual void F() {
 System.Console.WriteLine("Derived.F");
 }
 }
}

On the other hand, Derived§s author might investigate further, and decide that Derived§s F should override
Base§s F. This intent can be specified by using the override keyword, as shown below.

// Author A
namespace A
{
 public class Base // version 2
 {
 public virtual void F() { // added in version 2
 System.Console.WriteLine("Base.F");
 }
 }
}

// Author B
namespace B
{
 class Derived: A.Base // version 2b: override
 {
 public override void F() {
 base.F();
 System.Console.WriteLine("Derived.F");
 }
 }
}

The author of Derived has one other option, and that is to change the name of F, thus completely avoiding the
name collision. Though this change would break source and binary compatibility for Derived, the importance
of this compatibility varies depending on the scenario. If Derived is not exposed to other programs, then
changing the name of F is likely a good idea, as it would improve the readability of the program’ there would
no longer be any confusion about the meaning of F.

1.14 Attributes
C# is an imperative language, but like all imperative languages it does have some declarative elements. For
example, the accessibility of a method in a class is specified by decorating it public, protected, internal,
protected internal, or private. Through its support for attributes, C# generalizes this capability, so that
programmers can invent new kinds of declarative information, attach this declarative information to various
program entities, and retrieve this declarative information at run -time. Programs specify this additional
declarative information by defining and using attributes.

For instance, a framework might define a HelpAttribute attribute that can be placed on program elements
such as classes and methods, enabling developers to provide a mapping from program elements to
documentation for them. The example

using System;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

38 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

[AttributeUsage(AttributeTargets.All)]
public class HelpAttribute: Attribute
{
 public HelpAttribute(string url) {
 this.url = url;
 }

 public string Topic = null;

 private string url;

 public string Url {
 get { return url; }
 }
}

defines an attribute class named HelpAttribute, or Help for short, that has one positional parameter
(string url) and one named argument (string Topic). Positional parameters are defined by the formal
parameters for public instance constructors of the attribute class, and named parameters are defined by public
non-static read-write fields and properties of the attribute class.

The example
[Help("http://www.microsoft.com/.../Class1.htm")]
public class Class1
{
 [Help("http://www.microsoft.com/.../Class1.htm", Topic = "F")]
 public void F() {}
}

shows several uses of the attribute.

Attribute information for a given program element can be retrieved at run -time by using reflection support. The
example

using System;

class Test
{
 static void Main() {
 Type type = typeof(Class1);
 object[] arr = type.GetCustomAttributes(typeof(HelpAttribute));
 if (arr.Length == 0)
 Console.WriteLine("Class1 has no Help attribute.");
 else {
 HelpAttribute ha = (HelpAttribute) arr[0];
 Console.WriteLine("Url = {0}, Topic = {1}", ha.Url, ha.Topic);
 }
 }
}

checks to see if Class1 has a Help attribute, and writes out the associated Topic and Url values if the
attribute is present.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 2 Lexical structure

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 39

2. Lexical structure

2.1 Programs
A C# program consists of one or more source files. A source file is an ordered sequence of Unicode characters.
Source files typically have a one-to-one correspondence with files in a file system, but this correspondence is
not required.

Conceptually speaking, a program is compiled using two steps:

1. Lexical analysis, which translates a stream of input characters into a stream of tokens.

2. Syntactic analysis, which translates the stream of tokens into executable code.

2.2 Grammars
This specification presents the syntax of the C# programming language using two grammars. The lexical
grammar (−2.2.2) defines how Unicode characters are combined to form line terminators, white space,
comments, tokens, and pre-processing directives. The syntactic grammar (−2.2.3) defines how the tokens
resulting from the lexical grammar are combined to form C# programs.

2.2.1 Grammar notation
The lexical and syntactic grammars are presented using grammar productions. Each grammar production
defines a non-terminal symbol and the possible expansions of that non-terminal symbol into sequences of non-
terminal or terminal symbols. In grammar productions, non-terminal symbols are shown in italic type, and
terminal symbols are shown in a fixed-width font.

The first line of a grammar production is the name of the non-terminal symbol being defined, followed by a
colon. Each successive indented line contains a possible expansion of the non-terminal given as a sequence of
non-terminal or terminal symbols. For example, the production:

while-statement:
while (boolean-expression) embedded-statement

defines a while-statement to consist of the token while, followed by the token ” („ , followed by a boolean-
expression, followed by the token ”)„ , followed by an embedded-statement.

When there is more than one possible expansion of a non-terminal symbol, the alternatives are listed on separate
lines. For example, the production:

statement-list:
statement
statement-list statement

defines a statement-list to either consist of a statement or consist of a statement-list followed by a statement. In
other words, the definition is recursive and specifies that a statement list consists of one or more statements.

A subscripted suffix ” opt„ is used to indicate an optional symbol. The production:

block:
{ statement-listopt }

is shorthand for:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

40 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

block:
{ }
{ statement-list }

and defines a block to consist of an optional statement-list enclosed in ” {„ and ” }„ tokens.

Alternatives are normally listed on separate lines, though in cases where there are many alternatives, the phrase
” one of„ may precede a list of expansions given on a single line. This is simply shorthand for listing each of the
alternatives on a separate line. For example, the production:

real-type-suffix: one of
F f D d M m

is shorthand for:

real-type-suffix:
F

f

D

d

M

m

2.2.2 Lexical grammar
The lexical grammar of C# is presented in −2.3, −2.4, and −2.5. The terminal symbols of the lexical grammar are
the characters of the Unicode character set, and the lexical grammar specifies how characters are combined to
form tokens (−2.4), white space (−2.3.2), comments (−2.3.3), and pre-processing directives (−2.5).

Every source file in a C# program must conform to the input production of the lexical grammar (−2.3).

2.2.3 Syntactic grammar
The syntactic grammar of C# is presented in the chapters and appendices that follow this chapter. The terminal
symbols of the syntactic grammar are the tokens defined by the lexical grammar, and the syntactic grammar
specifies how tokens are combined to form C# programs.

Every source file in a C# program must conform to the compilation-unit production of the syntactic grammar
(−9.1).

2.3 Lexical analysis
The input production defines the lexical structure of a C# source file. Each source file in a C# progra m must
conform to this lexical grammar production.

input:
input-sectionopt

input-section:
input-section-part
input-section input-section-part

input-section-part:
input-elementsopt new-line
pp-directive

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 2 Lexical structure

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 41

input-elements:
input-element
input-elements input-element

input-element:
whitespace
comment
token

Five basic elements make up the lexical structure of a C# source file: Line terminators (−2.3.1), white space
(−2.3.2), comments (−2.3.3), tokens (−2.4), and pre-processing directives (−2.5). Of these basic elements, only
tokens are significant in the syntactic grammar of a C# program (−2.2.3).

The lexical processing of a C# source file consists of reducing the file into a sequence of tokens which becomes
the input to the syntactic analysis. Line terminators, white space, and comments can serve to separate tokens,
and pre-processing directives can cause sections of the source file to be skipped, but otherwise these lexical
elements have no impact on the syntactic structure of a C# program.

When several lexical grammar productions match a sequence of characters in a source file, the lexica l
processing always forms the longest possible lexical element. For example, the character sequence // is
processed as the beginning of a single-line comment because that lexical element is longer than a single / token.

2.3.1 Line terminators
Line terminators divide the characters of a C# source file into lines.

new-line:
Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Line separator character (U+2028)
Paragraph separator character (U+2029)

For compatibility with source code editing tools that add end-of-file markers, and to enable a source file to be
viewed as a sequence of properly terminated lines, the following transformations are applied, in order, to every
source file in a C# program:

• If the last character of the source file is a Control-Z character (U+001A), this character is deleted.

• If the source file is non-empty and if the last character of the source file is not a carriage return (U+000D), a
line feed (U+000A), a line separator (U+2028), a paragraph separator (U+2029), or a carriage-return
character (U+000D) is added to the end of the source file.

2.3.2 White space
White space is defined as any character with Unicode class Zs (which includes the space character) as well as
the horizontal tab character, the vertical tab character, and the form feed character.

whitespace:
Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertical tab character (U+000B)
Form feed character (U+000C)

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

42 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

2.3.3 Comments
Two forms of comments are supported: single-line comments and delimited comments. Single-line comments
start with the characters // and extend to the end of the source line. Delimited comments start with the
characters /* and end with the characters */. Delimited comments may span multiple lines.

comment:
single-line-comment
delimited-comment

single-line-comment:
// input-charactersopt

input-characters:
input-character
input-characters input-character

input-character:
Any Unicode character except a new-line-character

new-line-character:
Carriage return character (U+000D)
Line feed character (U+000A)
Line separator character (U+2028)
Paragraph separator character (U+2029)

delimited-comment:
/* delimited-comment-charactersopt */

delimited-comment-characters:
delimited-comment-character
delimited-comment-characters delimited-comment-character

delimited-comment-character:
not-asterisk
* not-slash

not-asterisk:
Any Unicode character except *

not-slash:
Any Unicode character except /

Comments do not nest. The character sequences /* and */ have no special meaning within a // comment, and
the character sequence // has no special meaning within a /* */ comment.

Comments are not processed within character and string literals.

The example
/* Hello, world program
 This program writes ∞hello, world’ to the console
*/
class Hello
{
 static void Main() {
 Console.WriteLine("hello, world");
 }
}

includes a delimited comment.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 2 Lexical structure

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 43

The example
// Hello, world program
// This program writes ∞hello, world’ to the console
//
class Hello // any name will do for this class
{
 static void Main() { // this method must be named "Main"
 Console.WriteLine("hello, world");
 }
}

shows several single-line comments.

2.4 Tokens
There are several kinds of tokens: identifiers, keywords, literals, opera tors, and punctuators. White space and
comments are not tokens, though they may act as separators for tokens.

token:
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

2.4.1 Unicode character escape sequences
A Unicode character escape sequence represents a Unicode character. Unicode character escape sequences are
processed in identifiers (−2.4.2), character literals (−2.4.4.4), and regular string literals (−2.4.4.5). A Unicode
character escape is not processed in any other location (for example, to form an operator, punctuator, or
keyword).

unicode-escape-sequence:
\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

A Unicode escape sequence represents the single Unicode character formed by the hexadecimal number
following the ” \u„ or ” \U„ characters. Since C# uses a 16-bit encoding of Unicode characters in characters and
string values, a Unicode character in the range U+10000 to U+10FFFF is not permitted in a character literal and
is represented using two Unicode surrogate characters in a string literal. Unicode characters with cod e points
above 0x10FFFF are not supported.

Multiple translations are not performed. For instance, the string literal ” \u005Cu005C„ is equivalent to
” \u005C„ rather than ” \\„ . (The Unicode value \u005C is the character ” \„ .)

The example
class Class1
{
 static void Test(bool \u0066) {
 char c = '\u0066';
 if (\u0066)
 Console.WriteLine(c.ToString());
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

44 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

shows several uses of \u0066, which is the character escape sequence for the letter ” f„ . The program is
equivalent to

class Class1
{
 static void Test(bool f) {
 char c = 'f';
 if (f)
 Console.WriteLine(c.ToString());
 }
}

2.4.2 Identifiers
The rules for identifiers given in this section correspond exactly to those recommended by the Unicode 3.0
standard, Technical Report 15, Annex 7, except that underscore is allowed as an initial character (as is
traditional in the C programming language), Unicode escape characters are permitted in identifiers, and the ” @„
character is allowed as a prefix to enable keywords to be used as identifiers.

identifier:
available-identifier
@ identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not a keyword

identifier-or-keyword:
identifier-start-character identifier-part-charactersopt

identifier-start-character:
letter-character
_ (the underscore character)

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character:
A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character:
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character:
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character:
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 2 Lexical structure

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 45

formatting-character:
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

Examples of legal identifiers include ” identifier1„ , ” _identifier2„ , and ” @if„ .

The prefix ” @„ enables the use of keywords as identifiers, which is useful when interfacing with other
programming languages. The character @ is not actually part of the identifier, so the identifier might be seen in
other languages as a normal identifier, without the prefix. Use of the @ prefix for identifiers that are not
keywords is permitted, but strongly discouraged as a matter of style.

The example:
class @class
{
 public static void @static(bool @bool) {
 if (@bool)
 Console.WriteLine("true");
 else
 Console.WriteLine("false");
 }
}

class Class1
{
 static void M() {
 cl\u0061ss.st\u0061tic(true);
 }
}

defines a class named ” class„ with a static method named ” static„ that takes a parameter named ” bool„ .
Note that since Unicode escapes are not permitted in keywords, the token ” cl\u0061ss„ is an identifier, and is
the same identifier as ” @class„ .

Two identifiers are considered the same if they are identical after the following transformations are applied, in
order:

• The prefix ” @„ , if used, is removed.

• Each unicode-escape-sequence is transformed into its corresponding Unicode character

Identifiers containing two consecutive underscore characters are reserved for use by the implementation. For
example, an implementation may provide extended keywords that begin with two underscores.

2.4.3 Keywords
A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier except
when prefaced by the @ character.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

46 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

keyword: one of
abstract as base bool break

byte case catch char checked

class const continue decimal default

delegate do double else enum

event explicit extern false finally

fixed float for foreach goto

if implicit in int interface

internal is lock long namespace

new null object operator out

override params private protected public

readonly ref return sbyte sealed

short sizeof stackalloc static string

struct switch this throw true

try typeof uint ulong unchecked

unsafe ushort using virtual void

volatile while

In some places in the grammar, specific identifiers have special meaning, but are not keywords. For example,
within a property declaration, the ” get„ and ” set„ identifiers have special meaning (−10.6.2). An identifier
other than get or set is never permitted in these locations, so this use does not conflict with a use of these
words as identifiers.

2.4.4 Literals
A literal is a source code representation of a value.

literal:
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

2.4.4.1 Boolean literals
There are two boolean literal values: true and false.

boolean-literal:
true

false

The type of a boolean-literal is bool.

2.4.4.2 Integer literals
Integer literals are used to write values of types int, uint, long, and ulong. Integer literals have two possible
forms: decimal and hexadecimal.

integer-literal:
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal:
decimal-digits integer-type-suffixopt

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 2 Lexical structure

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 47

decimal-digits:
decimal-digit
decimal-digits decimal-digit

decimal-digit: one of
0 1 2 3 4 5 6 7 8 9

integer-type-suffix: one of
U u L l UL Ul uL ul LU Lu lU lu

hexadecimal-integer-literal:
0x hex-digits integer-type-suffixopt
0X hex-digits integer-type-suffixopt

hex-digits:
hex-digit
hex-digits hex-digit

hex-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

The type of an integer literal is determined as follows:

• If the literal has no suffix, it has the first of these types in which its value can be represented: int, uint,
long, ulong.

• If the literal is suffixed by U or u, it has the first of these types in which its value can be represented: uint,
ulong.

• If the literal is suffixed by L or l, it has the first of these types in which its value can be represented: long,
ulong.

• If the literal is suffixed by UL, Ul, uL, ul, LU, Lu, lU, or lu, it is of type ulong.

If the value represented by an integer literal is outside the range of the ulong type, an error occurs.

As a matter of style, it is suggested that ” L„ be used instead of ” l„ when writing literals of type long, since it is
easy to confuse the letter ” l„ with the digit ” 1„ .

To permit the smallest possible int and long values to be written as decimal integer literals, the following two
rules exist:

• When a decimal-integer-literal with the value 2147483648 (231) and no integer-type-suffix appears as the
token immediately following a unary minus operator token (−7.6.2), the result is a constant of type int with
the value ‘2147483648 (‘231). In all other situations, such a decimal-integer-literal is of type uint.

• When a decimal-integer-literal with the value 9223372036854775808 (263) and no integer-type-suffix
appears as the token immediately following a unary minus operator token (−7.6.2), the result is a constant of
type long with the value ‘9223372036854775808 (‘263). In all other situations, such a decimal-integer-
literal is of type ulong.

2.4.4.3 Real literals
Real literals are used to write values of types float, double, and decimal.

real-literal:
decimal-digits . decimal-digits exponent-partopt real-type-suffixopt
. decimal-digits exponent-partopt real-type-suffixopt
decimal-digits exponent-part real-type-suffixopt
decimal-digits real-type-suffix

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

48 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

exponent-part:
e signopt decimal-digits
E signopt decimal-digits

sign: one of
+ -

real-type-suffix: one of
F f D d M m

If no real type suffix is specified, the type of the real literal i s double. Otherwise, the real type suffix
determines the type of the real literal, as follows:

• A real literal suffixed by F or f is of type float. For example, the literals 1f, 1.5f, 1e10f, and
123.456F are all of type float.

• A real literal suffixed by D or d is of type double. For example, the literals 1d, 1.5d, 1e10d, and
123.456D are all of type double.

• A real literal suffixed by M or m is of type decimal. For example, the literals 1m, 1.5m, 1e10m, and
123.456M are all of type decimal.

If the specified literal cannot be represented in the indicated type, then a compile-time error occurs.

The value of a real literal is determined by using the IEEE ” round to nearest„ mode.

2.4.4.4 Character literals
A character literal represents a single character, and usually consists of a character in quotes, as in 'a'.

character-literal:
' character '

character:
single-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-character:
 Any character except ' (U+0027), \ (U+005C), and new-line-character

simple-escape-sequence: one of
\' \" \\ \0 \a \b \f \n \r \t \v

hexadecimal-escape-sequence:
\x hex-digit hex-digitopt hex-digitopt hex-digitopt

A character that follows a backslash character (\) in a character must be one of the following characters: ', ",
\, 0, a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time error occurs.

A simple escape sequence represents a Unicode character encoding, as described in the table below.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 2 Lexical structure

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 49

Escape
sequence

Character
name

Unicode
encoding

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

A hexadecimal escape sequence represents a single Unicode character, with the value formed by the
hexadecimal number following ” \x„ .

If the value represented by a character literal is greater than U+FFFF, an error occurs.

A Unicode character escape sequence (−2.4.1) in a character literal must be in the range U+0000 to U+FFFF.
Unicode characters in the range U+10000 to U+10FFFF are only permitted in string literals and are encoded as
two Unicode ” surrogate„ characters.

The type of a character-literal is char.

2.4.4.5 String literals
C# supports two forms of string literals: regular string literals and verbatim string literals.

A regular string literal consists of zero or more characters enclosed in double quotes, as in "hello", and may
include both simple escape sequences (such as \t for the tab character), hexadecimal escape sequences, and
Unicode escape sequences.

A verbatim string literal consists of an @ character followed by a double-quote character, zero or more
characters, and a closing double-quote character. A simple example is @"hello". In a verbatim string literal,
the characters between the delimiters are interpreted verbatim, the only exception being a quote-escape-
sequence. In particular, simple escape sequences, hexadecimal escape sequences, and Unicode character escape
sequences are not processed in verbatim string literals. A verbatim string literal may span multiple lines.

string-literal:
regular-string-literal
verbatim-string-literal

regular-string-literal:
" regular-string-literal-charactersopt "

regular-string-literal-characters:
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

50 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

regular-string-literal-character:
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-regular-string-literal-character:
Any character except " (U+0022), \ (U+005C), and new-line-character

verbatim-string-literal:
@" verbatim -string-literal-charactersopt "

verbatim-string-literal-characters:
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character:
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character:
any character except "

quote-escape-sequence:
""

A character that follows a backslash character (\) in a regular-string-literal-character must be one of the
following characters: ', ", \, 0, a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time error occurs.

The example
string a = "hello, world"; // hello, world
string b = @"hello, world"; // hello, world

string c = "hello \t world"; // hello world
string d = @"hello \t world"; // hello \t world

string e = "Joe said \"Hello\" to me"; // Joe said "Hello" to me
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello" to me

string g = "\\\\server\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file.txt"; // \\server\share\file.txt

string i = "one\ntwo\nthree";
string j = @"one
two
three";

shows a variety of string literals. The last string literal, j, is a verbatim string literal that spans multiple lines.
The characters between the quotation marks, including white space such as newline characters, are preser ved
verbatim.

Since a hexadecimal escape sequence can have a variable number of hex digits, the string literal "\x123"
contains a single character with hex value 123. To have a string containing the two characters with hex values
12 and 3, respectively, one could write "\x00123" or "\x12" + "3" instead.

The type of a string-literal is string.

Each string literal does not necessarily result in a new string instance. When two or more string literals that are
equivalent according to the string equality operator (−7.9.7) appear in the same assembly, these string literals
refer to the same string instance. For instance, the output of the program

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 2 Lexical structure

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 51

class Test
{
 static void Main() {
 object a = "hello";
 object b = "hello";
 Console.WriteLine(a == b);
 }
}

is True because the two literals refer to the same string instance.

2.4.4.6 The null literal
null-literal:

null

The type of a null-literal is the null type.

2.4.5 Operators and punctuators
There are several kinds of operators and punctuators. Operators are used in expressions to describe operations
involving one or more operands. For example, the expression a + b uses the + operator to add the two
operands a and b. Punctuators are for grouping and separating.

operator-or-punctuator: one of
{ } [] () . , : ;

+ - * / % & | ^ ! ~

= < > ? ++ -- && || << >>

== != <= >= += -= *= /= %= &=

|= ^= <<= >>= ->

2.5 Pre-processing directives
The pre-processing directives provide the ability to conditionally skip sections of sou rce files, to report error and
warning conditions, and to delineate distinct regions of source code. The term ” pre-processing directives„ is
used only for consistency with the C and C++ programming languages. In C#, there is no separate pre-
processing step; pre-processing directives are processed as part of the lexical analysis phase.

pp-directive:
pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region

pp-new-line:
whitespaceopt single-line-commentopt new-line

The following pre-processing directives are available:

• #define and #undef, which are used to define and undefine conditional symbols (−2.5.3).

• #if, #elif, #else, and #endif, which are used to conditionally skip sections of source code (−2.5.4).

• #line, which is used to control line numbers emitted for errors and warnings (−2.5.5).

• #error and #warning, which are used to issue errors and warnings (−2.5.6).

• #region and #endregion, which are used to explicitly mark sections of source code (−2.5.7).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

52 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

A pre-processing directive always occupies a separate line of source code and always begins with a # character
and a pre-processing directive name. Whitespace may occur before the # character and between the # character
and the directive name.

A source line containing a #define, #undef, #if, #elif, #else, #endif, or #line directive may end with
a single-line comment. Delimited comments (the /* */ style of comments) are not permitted on source lines
containing pre-processing directives.

Pre-processing directives are not tokens and are not part of the syntactic grammar of C#. However, pre -
processing directives can be used to include or exclude sequences of tokens and can in that way affect the
meaning of a C# program. For example, the program:

#define A
#undef B

class C
{
#if A
 void F() {}
#else
 void G() {}
#endif

#if B
 void H() {}
#else
 void I() {}
#endif
}

produces the exact same sequence of tokens as the program:
class C
{
 void F() {}
 void I() {}
}

Thus, whereas the two programs are lexically quite different, they are syntactically identical.

2.5.1 Conditional compilation symbols
The conditional compilation functionality provided by the #if, #elif, #else, and #endif directives is
controlled through pre-processing expressions and conditional compilation symbols.

conditional-symbol:
Any identifier-or-keyword except true or false

A conditional compilation symbol has two possible states: defined or undefined. At the beginning of the lexical
processing of a source file, a conditional compilation symbol is undefined unless it has been explicitly defined
by an external mechanism (such as a command-line compiler option). When a #define directive is processed,
the conditional compilation symbol named in the directive becomes defined in that source file. The symbol
remains defined until an #undef directive for that same symbol is processed, or until the end of the source file
is reached. An implication of this is that #define and #undef directives in one source file have no effect on
other source files in the same program.

When referenced in a pre-processing expression, a defined conditional compilation symbol has the boolean
value true, and an undefined conditional compilation symbol has the boolean value false. There is no
requirement that conditional compilation symbols be explicitly declared before they are referenced in pre -
processing expressions. Instead, undeclared symbols are simply undefined and thus have the value false.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 2 Lexical structure

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 53

The name space for conditional compilation symbols is distinct and separate from all other named entities in a
C# program. Conditional compilation symbols can only be referenced in #define and #undef directives and
in pre-processing expressions.

2.5.2 Pre-processing expressions
Pre-processing expressions can occur in #if and #elif directives. The !, ==, !=, && and || operators are
permitted in pre-processing expressions, and parentheses may be used for grouping.

pp-expression:
whitespaceopt pp-or-expression whitespaceopt

pp-or-expression:
pp-and-expression
pp-or-expression whitespaceopt || whitespaceopt pp-and-expression

pp-and-expression:
pp-equality-expression
pp-and-expression whitespaceopt && whitespaceopt pp-equality-expression

pp-equality-expression:
pp-unary-expression
pp-equality-expression whitespaceopt == whitespaceopt pp-unary-expression
pp-equality-expression whitespaceopt != whitespaceopt pp-unary-expression

pp-unary-expression:
pp-primary-expression
! whitespaceopt pp-unary-expression

pp-primary-expression:
true
false
conditional-symbol
(pp-expression)

When referenced in a pre-processing expression, a defined conditional compilation symbol has the boolean
value true, and an undefined conditional compilation symbol has the boolean value false.

Evaluation of a pre-processing expression always yields a boolean value. The rules of evaluation for a pre -
processing expression are the same as those for a constant expression (−7.15), except that the only user-defined
entities that can be referenced are conditional compilation symbols.

2.5.3 Declaration directives
The declaration directives are used to define or undefine conditional compilation symbols.

pp-declaration:
whitespaceopt # whitespaceopt define whitespace conditional-symbol pp-new-line
whitespaceopt # whitespaceopt undef whitespace conditional-symbol pp-new-line

The processing of a #define directive causes the given conditional compilation symbol to become defined,
starting with the source line that follows the directive. Likewise, the processing of an #undef directive causes
the given conditional compilation symbol to become undefined, starting with the source line that follows the
directive.

Any #define and #undef directives in a source file must occur before the first token (−2.4) in the source file,
or otherwise a compile-time error occurs. In intuitive terms, #define and #undef directives must precede any
” real code„ in the source file.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

54 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The example:
#define Enterprise

#if Professional || Enterprise
 #define Advanced
#endif

namespace Megacorp.Data
{
 #if Advanced
 class PivotTable {...}
 #endif
}

is valid because the #define directives precede the first token (the namespace keyword) in the source file.

An #undef directive may undefine a name that is not defined. The example below defines a name and then
undefines it twice; the second #undef has no effect but is still legal.

#define A
#undef A
#undef A

2.5.4 Conditional compilation directives
The conditional compilation directives are used to conditionally include or exclude portions of a source file.

pp-conditional:
pp-if-section pp-elif-sectionsopt pp-else-sectionopt pp-endif

pp-if-section:
whitespaceopt # whitespaceopt if pp-expression pp-new-line conditional-sectionopt

pp-elif-sections:
pp-elif-section
pp-elif-sections pp-elif-section

pp-elif-section:
whitespaceopt # whitespaceopt elif pp-expression pp-new-line conditional-sectionopt

else-section:
whitespaceopt # whitespaceopt else pp-new-line conditional-sectionopt

endif-line:
whitespaceopt # whitespaceopt endif pp-new-line

conditional-section:
input-section
skipped-section

skipped-section:
skipped-section-part
skipped-section skipped-section-part

skipped-section-part:
skipped-charactersopt new-line
pp-directive

skipped-characters:
whitespaceopt not-number-sign input-charactersopt

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 2 Lexical structure

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 55

not-number-sign:
Any input-character except #

Conditional compilation directives must be written as sets consisting of, in order, an #if directive, zero or more
#elif directives, zero or one #else directive, and an #endif directive. Between the directives are conditional
sections of source code. Each section is controlled by the immediately preceding direc tive. A conditional section
may itself contain nested conditional compilation directives provided these directives form complete sets.

A pp-conditional selects at most one of the contained conditional-sections for normal lexical processing:

• The pp-expressions of the #if and #elif directives are evaluated in order until one yields true. If an
expression yields true, the conditional-section of the corresponding directive is selected.

• If all pp-expressions yield false, and if an #else directive is present, the conditional-section of the #else
directive is selected.

• Otherwise, no conditional-section is selected.

The selected conditional-section, if any, is processed as a normal input-section: the source code contained in the
section must adhere to the lexical grammar; tokens are generated from the source code in the section; and pre-
processing directives in the section have the prescribed effects.

The remaining conditional-sections, if any, are processed as skipped-sections: except for pre-processing
directives, the source code in the section need not adhere to the lexical grammar; no tokens are generated from
the source code in the section; and pre-processing directives in the section must be lexically correct but are not
otherwise processed. Within a conditional-section that is being processed as a skipped-section, any nested
conditional-sections (contained in nested #if...#endif and #region...#endregion constructs) are also
processed as skipped-sections.

The following example illustrates how conditional compilat ion directives can nest:
#define Debug // Debugging on
#undef Trace // Tracing off

class PurchaseTransaction
{
 void Commit() {
 #if Debug
 CheckConsistency();
 #if Trace
 WriteToLog(this.ToString());
 #endif
 #endif
 CommitHelper();
 }
}

Except for pre-processing directives, skipped source code is not subject to lexical analysis. For example, the
following is valid despite the unterminated comment in the #else section:

#define Debug // Debugging on

class PurchaseTransaction
{
 void Commit() {
 #if Debug
 CheckConsistency();
 #else
 /* Do something else
 #endif
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

56 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

Note, however, that pre-processing directives are required to be lexically correct even in skipped sections of
source code.

Pre-processing directives are not processed when they appear inside multi-line input elements. For example, the
program:

class Hello
{
 static void Main() {
 System.Console.WriteLine(@"hello,
#if Debug
 world
#else
 Nebraska
#endif
 ");
 }
}

produces the output:
hello,
#if Debug
 world
#else
 Nebraska
#endif

In peculiar cases, the set of pre-processing directives that are processed might depend on the evaluation of the
pp-expression. The example:

#if X
 /*
#else
 /* */ class Q { }
#endif

always produces the same token stream (class Q { }), regardless of whether X is defined or not. If X is defined,
the only processed directives are #if and #endif, due to the multi-line comment. If X is undefined, then three
directives (#if, #else, #endif) are part of the directive set.

2.5.5 Line directives
Line directives may be used to alter the line numbers and source file names that are reported by the compiler in
output such as warnings and errors.

pp-line:
whitespaceopt # whitespaceopt line whitespaceopt line-indicator pp-new-line
whitespaceopt # whitespaceopt line default

line-indicator:
decimal-digits whitepaceopt file-nameopt

file-name:
" file-name-characters "

file-name-characters:
file-name-character
file-name-characters file-name-character

file-name-character:
Any input-character except "

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 2 Lexical structure

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 57

When no #line directives are present, the compiler reports true line numbers and source file names in its
output. The #line directive is most commonly used in meta-programming tools that generate C# source code
from some other text input. When processing a #line directive that includes a line-indicator, the compiler
treats the line after the directive as having the given line number (and file name, if specified).

A #line default directive reverses the effect of all preceding #line directives. The compiler reports true line
information for subsequent lines, precisely as if no #line directives had been processed.

Note that the file-name of a #line directive differs from an ordinary string literal in that escape characters are
not processed; the –\§ character simply designates an ordinary backslash character within a file-name.

2.5.6 Diagnostic directives
The diagnostic directives are used to explicitly generate error and warning messages that are reported in the
same way as other compile-time errors and warnings.

pp-diagnostic:
whitespaceopt # whitespaceopt error whitespaceopt pp-message
whitespaceopt # whitespaceopt warning whitespaceopt pp-message

pp-message:
input-charactersopt new-line

The example:
#warning Code review needed before check-in

#if Debug && Retail
 #error A build can't be both debug and retail
#endif

class Test {...}

always produces a warning (” Code review needed before check-in„), and produces an error (” A build can§t be
both debug and retail„) if the conditional symbols Debug and Retail are both defined.

2.5.7 Region directives
The region directives are used to explicitly mark regions of source code.

pp-region:
pp-start-region conditional-sectionopt pp-end-region

pp-start-region:
whitespaceopt # whitespaceopt region whitespaceopt pp-message

pp-end-region:
whitespaceopt # whitespaceopt endregion whitespaceopt pp-message

No semantic meaning is attached to a region; regions are intended for use by the programmer or automated tools
to mark a section of source code. The message specified in a #region or #endregion directive likewise has
no semantic meaning; it merely serves to identify the region. Matching #region and #endregion directives
may have different pp-messages.

The lexical processing of a region:
#region
...
#endregion

corresponds exactly to the lexical processing of a conditional compilation directive of the form:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

58 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

#if true
...
#endif

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 3 Basic concepts

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 59

3. Basic concepts

3.1 Program Startup
Program startup occurs when the execution environment calls a designated method, which is referred to as the
program's entry point. This entry point method is always named Main, and can have one of the following
signatures:

static void Main() {...}

static void Main(string[] args) {...}

static int Main() {...}

static int Main(string[] args) {...}

As shown, the entry point may optionally return an int value. This return value is used in program termination
(−3.2).

The entry point may optionally have one formal parameter, and this formal parameter may have any name. If
such a parameter is declared, it must obey the following constraints:

• The value of this parameter must not be null.

• Let args be the name of the parameter. If the length of the array designated by args is greater than zero,
the array members args[0] through args[args.Length-1], inclusive, must refer to strings, called
program parameters, which are given implementation-defined values by the host environment prior to
program startup. The intent is to supply to the program information determi ned prior to program startup
from elsewhere in the hosted environment. If the host environment is not capable of supplying strings with
letters in both uppercase and lowercase, the implementation shall ensure that the strings are received in
lowercase. On systems supporting a command line, program parameters correspond to what are generally
known as command-line arguments.

Since C# supports method overloading, a class or struct may contain multiple definitions of some method,
provided each has a different signature. However, within a single program, no class or struct shall contain more
than one method called Main whose definition qualifies it to be used as a program entry point. Other overloaded
versions of Main are permitted, provided they have more than one parameter, or their only parameter is other
than type string[].

A program can be made up of multiple classes or structs, two or more of which contain a method called Main
whose definition qualifies it to be used as a program entry point. In such cases, one of these Main methods must
be chosen as the entry point so that program startup can occur. This choice of an entry point is beyond the scope
of this specification’ no mechanism for specifying or determining an entry point is provided.

In C#, every method must be defined as a member of a class or struct. Ordinarily, the declared accessibility
(−3.5.1) of a method is determined by the access modifiers (−10.2.3) specified in its declaration, and similarly
the declared accessibility of a type is determined by the access modifiers specified in its declaration. In order for
a given method of a given type to be callable, both the type and the member must be accessible. However, the
program entry point is a special case. Specifically, the execution environment can access the program's entry
point regardless of its declared accessibility and regardless of the declared accessibility of its enclosing type
declarations.

In all other respects, entry point methods behave like those that are not entry points.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

60 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

3.2 Program termination
Program termination returns control to the execution environment.

If the return type of the program§s entry point method is int, the value returned serves as the program's
termination status code. The purpose of this code is to allow communication of success or failure to the
execution environment.

If the return type of the entry point method is void, reaching the right brace (}) which terminates that method,
or executing a return statement that has no expression, results in a termination status code of 0.

Prior to a program§s termination, destructors for all of its objects that have not yet been garbage collected are
called, unless such cleanup has been suppressed. (The means of suppression are outside the scope of this
specification.)

3.3 Declarations
Declarations in a C# program define the constituent elements of the program. C# programs are organized using
namespaces (−9), which can contain type declarations and nested namespace declarations. Type declarations
(−9.5) are used to define classes (−10), structs (−11), interfaces (−13), enums (−14), and delegates (−15). The
kinds of members permitted in a type declaration depends on the form of the type declaration. For instance, class
declarations can contain declarations for instance constructors (−10.10), static constructors (−10.11), destructors
(−10.12), constants (−10.3), fields (−10.4), methods (−10.5), properties (−10.6), events (−10.7), indexers (−10.8),
operators (−10.9), and nested types.

A declaration defines a name in the declaration space to which the declaration belongs. Except for overloaded
members (−3.6), it is an error to have two or more declarations that introduce members with the same name in a
declaration space. It is never possible for a declaration space to contain different kinds of members with the
same name. For example, a declaration space can never contain a field and a method by the same name.

There are several different types of declaration spaces, as describ ed in the following.

• Within all source files of a program, namespace-member-declarations with no enclosing namespace-
declaration are members of a single combined declaration space called the global declaration space.

• Within all source files of a program, namespace-member-declarations within namespace-declarations that
have the same fully qualified namespace name are members of a single combined declaration space.

• Each class, struct, or interface declaration creates a new declaration space. Names are introdu ced into this
declaration space through class-member-declarations, struct-member-declarations, or interface-member-
declarations. Except for overloaded instance constructor declarations and static constructor declarations, a
class or struct member declaration cannot introduce a member by the same name as the class or struct. A
class, struct, or interface permits the declaration of overloaded methods and indexers. Furthermore, a class
or struct permits the declaration of overloaded instance constructors and o verloaded operators. For example,
a class, struct, or interface may contain multiple method declarations with the same name, provided these
method declarations differ in their signature (−3.6). Note that base classes do not contribute to the
declaration space of a class, and base interfaces do not contribute to the declaration space of an interface.
Thus, a derived class or interface is allowed to declare a member with the same name as an inherited
member. Such a member is said to hide the inherited member.

• Each enumeration declaration creates a new declaration space. Names are introduced into this declaration
space through enum-member-declarations.

• Each block or switch-block creates a different declaration space for local variables. Names are introduced
into this declaration space through local-variable-declarations. If a block is the body of an instance
constructor, static constructor, or method declaration, the parameters declared in the formal-parameter-list
are members of the block§s local variable declaration space. The local variable declaration space of a block

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 3 Basic concepts

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 61

includes any nested blocks. Thus, within a nested block it is not possible to declare a local variable with the
same name as a local variable in an enclosing block.

• Each block or switch-block creates a separate declaration space for labels. Names are introduced into this
declaration space through labeled-statements, and the names are referenced through goto-statements. The
label declaration space of a block includes any nested blocks. Thus, within a nested block it is not possible
to declare a label with the same name as a label in an enclosing block.

The textual order in which names are declared is generally of no significance. In particular, textual order is not
significant for the declaration and use of namespaces, types, constants, methods, properties, events, indexers,
operators, instance constructors, static constructors, and destructors. Declaration order is significant in the
following ways:

• Declaration order for field declarations and local variable declarations determines the order in which their
initializers (if any) are executed.

• Local variables must be defined before they are used (−3.7).

• Declaration order for enum member declarations (−14.3) is significant when constant-expression values are
omitted.

The declaration space of a namespace is ” open ended„ , and two namespace declarations with the same fully
qualified name contribute to the same declaration space. For example

namespace Megacorp.Data
{
 class Customer
 {
 ...
 }
}

namespace Megacorp.Data
{
 class Order
 {
 ...
 }
}

The two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified names Megacorp.Data.Customer and Megacorp.Data.Order. Because the
two declarations contribute to the same declaration space, it would have been an error if each contained a
declaration of a class with the same name.

The declaration space of a block includes any nested blocks. Thus, in the following example, the F and G
methods are in error because the name i is declared in the outer block and cannot be redeclared in the inner
block. However, the H and I methods are valid since the two i§s are declared in separate non-nested blocks.

class A
{
 void F() {
 int i = 0;
 if (true) {
 int i = 1;
 }
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

62 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

void G() {
 if (true) {
 int i = 0;
 }
 int i = 1;
 }

void H() {
 if (true) {
 int i = 0;
 }
 if (true) {
 int i = 1;
 }
 }

void I() {
 for (int i = 0; i < 10; i++)
 H();
 for (int i = 0; i < 10; i++)
 H();
 }
}

3.4 Members
Namespaces and types have members. The members of an entity are generally available through the use of a
qualified name that starts with a reference to the entity, followed by a ” .„ token, followed by the name of the
member.

Members of a type are either declared in the type or inherited from the base class of the type. When a type
inherits from a base class, all members of the base class, except instance const ructors, static constructors, and
destructors, become members of the derived type. The declared accessibility of a base class member does not
control whether the member is inherited’ inheritance extends to any member that isn§t an instance constructor,
static constructor, or destructor. However, an inherited member may not be accessible in a derived type, either
because of its declared accessibility (−3.5.1) or because it is hidden by a declaration in the type itself (−3.7.1.2).

3.4.1 Namespace members
Namespaces and types that have no enclosing namespace are members of the global namespace. This
corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a namespace are members of that namespace. This corresponds directly
to the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal namespaces,
and namespace names are always publicly accessible.

3.4.2 Struct members
The members of a struct are the members declared in the struct and the members inherited from class object.

The members of a simple type correspond directly to the members of the struct type aliase d by the simple type:

• The members of sbyte are the members of the System.SByte struct.

• The members of byte are the members of the System.Byte struct.

• The members of short are the members of the System.Int16 struct.

• The members of ushort are the members of the System.UInt16 struct.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 3 Basic concepts

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 63

• The members of int are the members of the System.Int32 struct.

• The members of uint are the members of the System.UInt32 struct.

• The members of long are the members of the System.Int64 struct.

• The members of ulong are the members of the System.UInt64 struct.

• The members of char are the members of the System.Char struct.

• The members of float are the members of the System.Single struct.

• The members of double are the members of the System.Double struct.

• The members of decimal are the members of the System.Decimal struct.

• The members of bool are the members of the System.Boolean struct.

3.4.3 Enumeration members
The members of an enumeration are the constants declared in the enumeration and the members inherited from
class object.

3.4.4 Class members
The members of a class are the members declared in the class and the members inherited from the base class
(except for class object which has no base class). The members inherited from the base class include the
constants, fields, methods, properties, events, indexers, operators, and types of the base class, but not the
instance constructors, static constructors, and destructors of the base class. Base class members are inherited
without regard to their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties, events, indexers,
operators, instance constructors, static constructors, destructors, and types.

The members of object and string correspond directly to the members of the class types they alias:

• The members of object are the members of the System.Object class.

• The members of string are the members of the System.String class.

3.4.5 Interface members
The members of an interface are the members declared in the interface and in all base interfaces of the interface,
and the members inherited from class object.

3.4.6 Array members
The members of an array are the members inherited from class System.Array.

3.4.7 Delegate members
The members of a delegate are the members inherited from class System.Delegate.

3.5 Member access
Declarations of members allow control over member access. The accessibility of a member is established by the
declared accessibility (−3.5.1) of the member combined with the accessibility of the immediately containing
type, if any.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

64 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

When access to a particular member is allowed, the member is said to be accessible. Conversely, when access to
a particular member is disallowed, the member is said to be inaccessible. Access to a member is permitted when
the textual location in which the access takes place is included in the accessibility domain (−3.5.2) of the
member.

3.5.1 Declared accessibility
The declared accessibility of a member can be one of the following:

• Public, which is selected by including a public modifier in the member declaration. The intuitive meaning
of public is ” access not limited„ .

• Protected internal (meaning protected or internal), which is selected by including both a protected and an
internal modifier in the member declaration. The intuitive meaning of protected internal is ” access
limited to this program or types derived from the containing class „ .

• Protected, which is selected by including a protected modifier in the member declaration. The intuitive
meaning of protected is ” access limited to the containing class or types derived from the containing
class„ .

• Internal, which is selected by including an internal modifier in the member declaration. The intuitive
meaning of internal is ” access limited to this program„ .

• Private, which is selected by including a private modifier in the member declaration. The intuitive
meaning of private is ” access limited to the containing type„ .

Depending on the context in which a member declaration takes place, only certain types of declared accessibility
are permitted. Furthermore, when a member declaration does not include any access modifiers, the context in
which the declaration takes place determines the default declared accessibility.

• Namespaces implicitly have public declared accessibility. No access modifiers are allowed on namespace
declarations.

• Types declared in compilation units or namespaces can have public or internal declared accessibility
and default to internal declared accessibility.

• Class members can have any of the five kinds of declared accessibility and default to private declared
accessibility. (Note that a type declared as a member of a class can have any of the five kinds of declared
accessibility, whereas a type declared as a member of a namespace can have only public or internal
declared accessibility.)

• Struct members can have public, internal, or private declared accessibility and default to private
declared accessibility. Struct members cannot have protected or protected internal declared
accessibility. (Note that a type declared as a member of a s truct can have public, internal, or private
declared accessibility, whereas a type declared as a member of a namespace can have only public or
internal declared accessibility.)

• Interface members implicitly have public declared accessibility. No access modifiers are allowed on
interface member declarations.

• Enumeration members implicitly have public declared accessibility. No access modifiers are allowed on
enumeration member declarations.

3.5.2 Accessibility domains
The accessibility domain of a member is the (possibly disjoint) sections of program text in which access to the
member is permitted. For purposes of defining the accessibility domain of a member, a member is said to be
top-level if it is not declared within a type, and a member is said to be nested if it is declared within another

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 3 Basic concepts

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 65

type. Furthermore, the program text of a program is defined as all program text contained in all source files of
the program, and the program text of a type is defined as all program text contained between the opening and
closing ” {„ and ” }„ tokens in the class-body, struct-body, interface-body, or enum-body of the type (including,
possibly, types that are nested within the type).

The accessibility domain of a predefined type (such as object, int, or double) is unlimited.

The accessibility domain of a top-level type T declared in a program P is defined as follows:

• If the declared accessibility of T is public, the accessibility domain of T is the program text of P and any
program that references P.

• If the declared accessibility of T is internal, the accessibility domain of T is the program text of P.

From these definitions it follows that the accessibility domain of a top -level type is always at least the program
text of the program in which the type is declared.

The accessibility domain of a nested member M declared in a type T within a program P is defined as follows
(noting that M may itself possibly be a type):

• If the declared accessibility of M is public, the accessibility domain of M is the accessibility domain of T.

• If the declared accessibility of M is protected internal, the accessibility domain of M is the intersection
of the accessibility domain of T with the program text of P and the program text of any type derived from T
declared outside P.

• If the declared accessibility of M is protected, the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of T and any type derived from T.

• If the declared accessibility of M is internal, the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of P.

• If the declared accessibility of M is private, the accessibility domain of M is the program text of T.

From these definitions it follows that the accessibility domain of a nested member is alwa ys at least the program
text of the type in which the member is declared. Furthermore, it follows that the accessibility domain of a
member is never more inclusive than the accessibility domain of the type in which the member is declared.

In intuitive terms, when a type or member M is accessed, the following steps are evaluated to ensure that the
access is permitted:

• First, if M is declared within a type (as opposed to a compilation unit or a namespace), an error occurs if that
type is not accessible.

• Then, if M is public, the access is permitted.

• Otherwise, if M is protected internal, the access is permitted if it occurs within the program in which M
is declared, or if it occurs within a class derived from the class in which M is declared and takes place
through the derived class type (−3.5.3).

• Otherwise, if M is protected, the access is permitted if it occurs within the class in which M is declared, or
if it occurs within a class derived from the class in which M is declared and takes place through the derived
class type (−3.5.3).

• Otherwise, if M is internal, the access is permitted if it occurs within the program in which M is declared.

• Otherwise, if M is private, the access is permitted if it occurs within the type in which M is declared.

• Otherwise, the type or member is inaccessible, and an error occurs.

In the example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

66 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

public class A
{
 public static int X;
 internal static int Y;
 private static int Z;
}

internal class B
{
 public static int X;
 internal static int Y;
 private static int Z;

 public class C
 {
 public static int X;
 internal static int Y;
 private static int Z;
 }

 private class D
 {
 public static int X;
 internal static int Y;
 private static int Z;
 }
}

the classes and members have the following accessibility domains:

• The accessibility domain of A and A.X is unlimited.

• The accessibility domain of A.Y, B, B.X, B.Y, B.C, B.C.X, and B.C.Y is the program text of the containing
program.

• The accessibility domain of A.Z is the program text of A.

• The accessibility domain of B.Z and B.D is the program text of B, including the program text of B.C and
B.D.

• The accessibility domain of B.C.Z is the program text of B.C.

• The accessibility domain of B.D.X, B.D.Y, and B.D.Z is the program text of B.D.

As the example illustrates, the accessibility domain of a member is never larger than that of a containing type.
For example, even though all X members have public declared accessibility, all but A.X have accessibility
domains that are constrained by a containing type.

As described in −3.4, all members of a base class, except for instance constructors, static constructors, and
destructors, are inherited by derived types. This includes even private members of a base clas s. However, the
accessibility domain of a private member includes only the program text of the type in which the member is
declared. In the example

class A
{
 int x;

 static void F(B b) {
 b.x = 1; // Ok
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 3 Basic concepts

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 67

class B: A
{
 static void F(B b) {
 b.x = 1; // Error, x not accessible
 }
}

the B class inherits the private member x from the A class. Because the member is private, it is only accessible
within the class-body of A. Thus, the access to b.x succeeds in the A.F method, but fails in the B.F method.

3.5.3 Protected access for instance members
When a protected instance member is accessed outside the program text of the class in which it is declared,
and when a protected internal instance member is accessed outside the program text of the program in
which it is declared, the access is required to take place through an instance of the derived class type in which
the access occurs. Let B be a base class that declares a protected instance member M, and let D be a class that
derives from B. Within the class-body of D, access to M can take one of the following forms:

• An unqualified type-name or primary-expression of the form M.

• A primary-expression of the form E.M, provided the type of E is D or a class derived from D.

• A primary-expression of the form base.M.

In addition to these forms of access, a derived class can access a protected instance constructor of a base class in
a constructor-initializer (−10.10.1).

In the example
public class A
{
 protected int x;

 static void F(A a, B b) {
 a.x = 1; // Ok
 b.x = 1; // Ok
 }
}

public class B: A
{
 static void F(A a, B b) {
 a.x = 1; // Error, must access through instance of B
 b.x = 1; // Ok
 }
}

within A, it is possible to access x through instances of both A and B, since in either case the access takes place
through an instance of A or a class derived from A. However, within B, it is not possible to access x through an
instance of A, since A does not derive from B.

3.5.4 Accessibility constraints
Several constructs in the C# language require a type to be at least as accessible as a member or another type. A
type T is said to be at least as accessible as a member or type M if the accessibility domain of T is a superset of
the accessibility domain of M. In other words, T is at least as accessible as M if T is accessible in all contexts
where M is accessible.

The following accessibility constraints exist:

• The direct base class of a class type must be at least as accessible as the class type itself.

• The explicit base interfaces of an interface type must be at least as accessible as the interface type itself.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

68 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• The return type and parameter types of a delegate type must be at least as accessible as the delegate type
itself.

• The type of a constant must be at least as accessible as the constant itself.

• The type of a field must be at least as accessible as the field itself.

• The return type and parameter types of a method must be at least as accessible as the method itself.

• The type of a property must be at least as accessible as the property itself.

• The type of an event must be at least as accessible as the event itself.

• The type and parameter types of an indexer must be at least as accessible as the indexer itself.

• The return type and parameter types of an operator must be at least as accessible as the o perator itself.

• The parameter types of an instance constructor must be at least as accessible as the instance constructor
itself.

In the example
class A {...}

public class B: A {...}

the B class is in error because A is not at least as accessible as B.

Likewise, in the example
class A {...}

public class B
{
 A F() {...}

 internal A G() {...}

 public A H() {...}
}

the H method in B is in error because the return type A is not at least as accessible as the method.

3.6 Signatures and overloading
Methods, instance constructors, indexers, and operators are characterized by their signatures:

• The signature of a method consists of the name of the method and the type and kind (value, reference, or
output) of each of its formal parameters. The signature of a method specif ically does not include the return
type, nor does it include the params modifier that may be specified for the right-most parameter.

• The signature of an instance constructor consists of the type and kind (value, reference, or output) of each of
its formal parameters. The signature of an instance constructor specifically does not include the params
modifier that may be specified for the right-most parameter.

• The signature of an indexer consists of the type of each of its formal parameters. The signature of a n indexer
specifically does not include the element type.

• The signature of an operator consists of the name of the operator and the type of each of its formal
parameters. The signature of an operator specifically does not include the result type.

Signatures are the enabling mechanism for overloading of members in classes, structs, and interfaces:

• Overloading of methods permits a class, struct, or interface to declare multiple methods with the same name,
provided their signatures are unique.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 3 Basic concepts

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 69

• Overloading of instance constructors permits a class or struct to declare multiple instance constructors,
provided their signatures are unique.

• Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided their
signatures are unique.

• Overloading of operators permits a class or struct to declare multiple operators with the same name,
provided their signatures are unique.

The following example shows a set of overloaded method declarations along with their signatures.
interface ITest
{
 void F(); // F()

 void F(int x); // F(int)

 void F(ref int x); // F(ref int)

 void F(out int x); // F(out int)

 void F(int x, int y); // F(int, int)

 int F(string s); // F(string)

 int F(int x); // F(int) error

 void F(string[] a); // F(string[])

 void F(params string[] a); // F(string[]) error
}

Note that the ref and out parameter modifiers (−10.5.1) are part of a signature. Thus, F(int), F(ref int),
and F(out int) are all unique signatures. Also note that the return type and the params modifier are not part
of a signature, so it is not possible to overload solely based on return type or on the inclusion or exclusion of the
params modifier. Because of these restrictions, the declarations of the methods F(int) and F(string[]) in
the example above are in error.

3.7 Scopes
The scope of a name is the region of program text within which it is possible to refer to the entity declared by
the name without qualification of the name. Scopes can be nested, and an inner scope may redeclare the
meaning of a name from an outer scope. (This does not, however, remove the restriction imposed by −3.3 that
within a nested block it is not possible to declare a local variable with the same name as a local variable in an
enclosing block.) The name from the outer scope is then said to be hidden in the region of program text covered
by the inner scope, and access to the outer name is only possible by qualifying the name.

• The scope of a namespace member declared by a namespace-member-declaration with no enclosing
namespace-declaration is the entire program text of each compilation unit.

• The scope of a namespace member declared by a namespace-member-declaration within a namespace-
declaration whose fully qualified name is N is the namespace-body of every namespace-declaration whose
fully qualified name is N or starts with the same sequence of identifiers as N.

• The scope of a name defined or imported by a using-directive extends over the namespace-member-
declarations of the compilation-unit or namespace-body in which the using-directive occurs. A using-
directive may make zero or more namespace or type names available within a particular compilation-unit or
namespace-body, but does not contribute any new members to the underlying declaration space. In other
words, a using-directive is not transitive but rather affects only the compilation-unit or namespace-body in
which it occurs.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

70 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• The scope of a member declared by a class-member-declaration is the class-body in which the declaration
occurs. In addition, the scope of a class member extends to the class-body of those derived classes that are
included in the accessibility domain (−3.5.2) of the member.

• The scope of a member declared by a struct-member-declaration is the struct-body in which the declaration
occurs.

• The scope of a member declared by an enum-member-declaration is the enum-body in which the declaration
occurs.

• The scope of a parameter declared in a constructor-declaration is the constructor-initializer and block of
that constructor-declaration.

• The scope of a parameter declared in a method-declaration is the method-body of that method-declaration.

• The scope of a parameter declared in an indexer-declaration is the accessor-declarations of that indexer-
declaration.

• The scope of a parameter declared in an operator-declaration is the block of that operator-declaration.

• The scope of a local variable declared in a local-variable-declaration is the block in which the declaration
occurs. It is an error to refer to a local variable in a textual position that precedes the variable-declarator of
the local variable.

• The scope of a local variable declared in a for-initializer of a for statement is the for-initializer, the for-
condition, the for-iterator, and the contained statement of the for statement.

• The scope of a label declared in a labeled-statement is the block in which the declaration occurs.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the member in a
textual position that precedes the declaration of the member. For example

class A
{
 void F() {
 i = 1;
 }

 int i = 0;
}

Here, it is valid for F to refer to i before it is declared.

Within the scope of a local variable, it is an error to refer to the local variable in a textual position that precedes
the variable-declarator of the local variable. For example

class A
{
 int i = 0;

 void F() {
 i = 1; // Error, use precedes declaration
 int i;
 i = 2;
 }

 void G() {
 int j = (j = 1); // Legal
 }

 void H() {
 int a = 1, b = ++a; // Legal
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 3 Basic concepts

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 71

In the F method above, the first assignment to i specifically does not refer to the field declared in the outer
scope. Rather, it refers to the local variable and it is in error because it textually precedes the declaration of the
variable. In the G method, the use of j in the initializer for the declaration of j is legal because the use does not
precede the variable-declarator. In the H method, a subsequent variable-declarator legally refers to a local
variable declared in an earlier variable-declarator within the same local-variable-declaration.

The scoping rules for local variables are designed to guarantee that the meaning of a name used in an expression
context is always the same within a block. If the scope of a local variable was to extend only from its declaration
to the end of the block, then in the example above, the first assignment would assign to the instance variable and
the second assignment would assign to the local variable, possibly leading to errors if the statements of the block
were later to be rearranged.

The meaning of a name within a block may differ based on the context in which the name is used. In the
example

class A {}

class Test
{
 static void Main() {
 string A = "hello, world";
 string s = A; // expression context

 Type t = typeof(A); // type context

 Console.WriteLine(s); // writes "hello, world"
 Console.WriteLine(t); // writes "A"
 }
}

the name A is used in an expression context to refer to the local variable A and in a type context to refer to the
class A.

3.7.1 Name hiding
The scope of an entity typically encompasses more program text than the declaration space of the entity. In
particular, the scope of an entity may include declarations tha t introduce new declaration spaces containing
entities of the same name. Such declarations cause the original entity to become hidden. Conversely, an entity is
said to be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance. The
characteristics of the two types of hiding are described in the following sections.

3.7.1.1 Hiding through nesting
Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as a result
of nesting types within classes or structs, and as a result of parameter and local variable declarations.

In the example
class A
{
 int i = 0;

 void F() {
 int i = 1;
 }

 void G() {
 i = 1;
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

72 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

within the F method, the instance variable i is hidden by the local variable i, but within the G method, i still
refers to the instance variable.

When a name in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that name.
In the example

class Outer
{
 static void F(int i) {}

 static void F(string s) {}

 class Inner
 {
 void G() {
 F(1); // Invokes Outer.Inner.F
 F("Hello"); // Error
 }

 static void F(long l) {}
 }
}

the call F(1) invokes the F declared in Inner because all outer occurrences of F are hidden by the inner
declaration. For the same reason, the call F("Hello") is in error.

3.7.1.2 Hiding through inheritance
Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from base
classes. This type of name hiding takes one of the following forms:

• A constant, field, property, event, or type introduced in a class or struct hides all base class members with
the same name.

• A method introduced in a class or struct hides all non-method base class members with the same name, and
all base class methods with the same signature (method name and parameter count, modifiers, and types).

• An indexer introduced in a class or struct hides all base class indexers with the same signature (parameter
count and types).

The rules governing operator declarations (−10.9) make it impossible for a derived class to declare an operator
with the same signature as an operator in a base class. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding an accessible name from an inherited scope causes a
warning to be reported. In the example

class Base
{
 public void F() {}
}

class Derived: Base
{
 public void F() {} // Warning, hiding an inherited name
}

the declaration of F in Derived causes a warning to be reported. Hiding an inherited name is specifically not an
error, since that would preclude separate evolution of base classes. For example, the above situation might have
come about because a later version of Base introduced an F method that wasn§t present in an earlier version of
the class. Had the above situation been an error, then any change made to a base class in a separately versioned
class library could potentially cause derived classes to become invalid.

The warning caused by hiding an inherited name can be eliminated through use of the new modifier:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 3 Basic concepts

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 73

class Base
{
 public void F() {}
}

class Derived: Base
{
 new public void F() {}
}

The new modifier indicates that the F in Derived is ” new„ , and that it is indeed intended to hide the inherited
member.

A declaration of a new member hides an inherited member only within the scope of the new member.
class Base
{
 public static void F() {}
}

class Derived: Base
{
 new private static void F() {} // Hides Base.F in Derived only
}

class MoreDerived: Derived
{
 static void G() { F(); } // Invokes Base.F
}

In the example above, the declaration of F in Derived hides the F that was inherited from Base, but since the
new F in Derived has private access, its scope does not extend to MoreDerived. Thus, the call F() in
MoreDerived.G is valid and will invoke Base.F.

3.8 Namespace and type names
Several contexts in a C# program require a namespace-name or a type-name to be specified. Either form of
name is written as one or more identifiers separated by ” .„ tokens.

namespace-name:
namespace-or-type-name

type-name:
namespace-or-type-name

namespace-or-type-name:
identifier
namespace-or-type-name . identifier

A type-name is a namespace-or-type-name that refers to a type. Following resolution as described below, the
namespace-or-type-name of a type-name must refer to a type, or otherwise an error occurs.

A namespace-name is a namespace-or-type-name that refers to a namespace. Following resolution as described
below, the namespace-or-type-name of a namespace-name must refer to a namespace, or otherwise an error
occurs.

The meaning of a namespace-or-type-name is determined as follows:

• If the namespace-or-type-name consists of a single identifier:

o If the namespace-or-type-name appears within the body of a class or struct declaration, then starting
with that class or struct declaration and continuing with each enclosing class or struct declaration (if
any), if a member with the given name exists, is accessible, and denotes a type, then the namespace-or-

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

74 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

type-name refers to that member. Note that non-type members (instance constructors, static
constructors, destructors, constants, fields, methods, properties, indexers, and operators) are ignored
when determining the meaning of a namespace-or-type-name.

o Otherwise, starting with the namespace declaration in which the namespace-or-type-name occurs (if
any), continuing with each enclosing namespace declaration (if any), and ending with the global
namespace, the following steps are evaluated until an entity is located:

• If the namespace contains a namespace member with the given name, then the namespace-or-type-
name refers to that member and, depending on the member, is classified as a namespace or a type.

• Otherwise, if the namespace declaration contains a using-alias-directive (−9.3.1) that associates the
given name with an imported namespace or type, then the namespace-or-type-name refers to that
namespace or type.

• Otherwise, if the namespaces imported by the using-namespace-directives (−9.3.2) of the
namespace declaration contain exactly one type with the given name, then the namespace-or-type-
name refers to that type.

• Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type with the given name, then the namespace-or-type-name is
ambiguous and an error occurs.

o Otherwise, the namespace-or-type-name is undefined and an error occurs.

• Otherwise, the namespace-or-type-name is of the form N.I, where N is a namespace-or-type-name
consisting of all identifiers but the rightmost one, and I is the rightmost identifier. N is first resolved as a
namespace-or-type-name. If the resolution of N is not successful, an error occurs. Otherwise, N.I is
resolved as follows:

o If N is a namespace and I is the name of an accessible member of that namespace, then N.I refers to
that member and, depending on the member, is classified as a namespace or a type.

o If N is a class or struct type and I is the name of an accessible type in N, then N.I refers to that type.

o Otherwise, N.I is an invalid namespace-or-type-name, and an error occurs.

3.8.1 Fully qualified names
Every namespace and type has a fully qualified name which uniquely identifies the namespace or type amongst
all others. The fully qualified name of a namespace or type N is determined as follows:

• If N is a member of the global namespace, its fully qualified name is N.

• Otherwise, its fully qualified name is S.N, where S is the fully qualified name of the namespace or type in
which N is declared.

In other words, the fully qualified name of N is the complete hierarchical path of identifiers that lead to N,
starting from the global namespace. Because every member of a namespace or type must have a unique name, it
follows that the fully qualified name of a namespace or type is always unique.

The example below shows several namespace and type declarations along with their associated fully qualified
names.

class A {} // A

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 3 Basic concepts

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 75

namespace X // X
{
 class B // X.B
 {
 class C {} // X.B.C
 }

 namespace Y // X.Y
 {
 class D {} // X.Y.D
 }
}

namespace X.Y // X.Y
{
 class E {} // X.Y.E
}

3.9 Automatic memory management
C# employs automatic memory management, which frees developers from manually allocating and freeing the
memory occupied by objects. Automatic memory management policies are implemented by a garbage collector.
The memory management life cycle of an object is as follows:

• When the object is created, memory for an object is allocated.

• When the object is no longer in use, the object becomes eligible for garbage collection.

• During garbage collection, the destructor (−10.12) for the object (if any) is run, and the object§s associated
memory is freed.

The garbage collector maintains information about object usage, and uses this information to make memory
management decisions, such as where in memory to locate a newly created object, when to reclaim the memory
occupied by an object that is no longer in use, and when to relocate an object. Like other languages that assume
the existence of a garbage collector, C# is designed so that the garbage collector may implement a wide range of
memory management policies. For instance, C# does not require that objects be garbage collected as so on as
they are eligible for collection, or that objects be garbage collected in any particular order.

For example, the program
using System;

class A
{
 ~A() {
 Console.WriteLine("Destruct instance of A");
 }
}

class B
{
 object Ref;

 public B(object o) {
 Ref = o;
 }

 ~B() {
 Console.WriteLine("Destruct instance of B");
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

76 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

class Test
{
 static void Main() {
 B b = new B(new A());
 b = null;
 }
}

creates an instance of class A and an instance of class B. These objects become eligible for garbage collection
when the variable b is assigned the value null, since after this time it is impossible for any user-written code to
access them. The output could be either

Destruct instance of A
Destruct instance of B

or
Destruct instance of B
Destruct instance of A

because the language imposes no constraints on the order in which objects are garbage collected.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 4 Types

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 77

4. Types

The types of the C# language are divided into two categories: Value types and reference types.

type:
value-type
reference-type

A third category of types, pointers, is available only in unsafe code. This is discussed further in −A.2.

Value types differ from reference types in that variables of the value types directly contain their data, whereas
variables of the reference types store references to their data, the latter known as objects. With reference types,
it is possible for two variables to reference the same object, and thus possible for operations on one variable to
affect the object referenced by the other variable. With value types, the variables each have their own copy of
the data, and it is not possible for operations on one to affect the other.

C#§s type system is unified such that a value of any type can be treated as an object. Every type in C# directly
or indirectly derives from the object class type, and object is the ultimate base class of all types. Values of
reference types are treated as objects simply by viewing the values as type object. Values of value types are
treated as objects by performing boxing and unboxing operations (−4.3).

4.1 Value types
A value type is either a struct type or an enumeration type. C# provides a set of predefined struct types called the
simple types. The simple types are identified through reserved words, and are further subdivided into numeric
types, integral types, and floating-point types.

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type

simple-type:
numeric-type
bool

numeric-type:
integral-type
floating-point-type
decimal

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

78 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

integral-type:
sbyte

byte

short

ushort

int

uint

long

ulong

char

floating-point-type:
float

double

enum-type:
type-name

All value types implicitly inherit from class object. It is not possible for any type to derive from a value type,
and value types are thus implicitly sealed (−10.1.1.2).

A variable of a value type always contains a value of that type. Unlike reference types, it is not possible for a
value of a value type to be null or to reference an object of a more derived type.

Assignment to a variable of a value type creates a copy of the value being assigned. This differs from
assignment to a variable of a reference type, which copies the reference but not the object identified by the
reference.

4.1.1 Default constructors
All value types implicitly declare a public parameterless instance constructor called the default constructor. The
default constructor returns a zero-initialized instance known as the default value for the value type:

• For all simple-types, the default value is the value produced by a bit pattern of all zeros:

o For sbyte, byte, short, ushort, int, uint, long, and ulong, the default value is 0.

o For char, the default value is '\x0000'.

o For float, the default value is 0.0f.

o For double, the default value is 0.0d.

o For decimal, the default value is 0.0m.

o For bool, the default value is false.

• For an enum-type E, the default value is 0.

• For a struct-type, the default value is the value produced by setting all value type fields to their default value
and all reference type fields to null.

Like any other instance constructor, the default constructor of a value type is invoked using the new operator.
(Note: for efficiency reasons, this requirement is not intended to actually have the implementation generate a
constructor call.) In the example below, the variables i and j are both initialized to zero.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 4 Types

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 79

class A
{
 void F() {
 int i = 0;
 int j = new int();
 }
}

Because every value type implicitly has a public parameterless instance constructor, it is not possible for a struct
type to contain an explicit declaration of a parameterless constructor. A struct type is however permitted to
declare parameterized instance constructors (−11.3.8). For example

struct Point
{
 int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

Given the above declaration, the statements
Point p1 = new Point();
Point p2 = new Point(0, 0);

both create a Point with x and y initialized to zero.

4.1.2 Struct types
A struct type is a value type that can declare constants, fields, methods, properties, indexers, operators, instance
constructors, static constructors, and nested types. Struct types are described in −11.

4.1.3 Simple types
C# provides a set of predefined struct types called the simple types. The simpl e types are identified through
reserved words, but these reserved words are simply aliases for predefined struct types in the System
namespace, as described in the table below.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

80 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

Reserved word Aliased type
sbyte System.SByte

byte System.Byte

short System.Int16

ushort System.UInt16

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

char System.Char

float System.Single

double System.Double

bool System.Boolean

decimal System.Decimal

Because a simple type aliases a struct type, every simple type has members. For example, int has the members
declared in System.Int32 and the members inherited from System.Object, and the following statements
are permitted:

int i = int.MaxValue; // System.Int32.MaxValue constant
string s = i.ToString(); // System.Int32.ToString() instance method
string t = 123.ToString(); // System.Int32.ToString() instance method

The simple types differ from other struct types in that they permit certain additional operations:

• Most simple types permit values to be created by writing literals (−2.4.4). For example, 123 is a literal of
type int and 'a' is a literal of type char. C# makes no provision for literals of other struct types, and
values of other struct types are ultimately always created through instance constructors of those struct types.

• When the operands of an expression are all simple type constants, it is possible for the compiler to evaluate
the expression at compile-time. Such an expression is known as a constant-expression (−7.15). Expressions
involving operators defined by other struct types are not considered to be constant expressions.

• Through const declarations it is possible to declare constants of the simple types (−10.3). It is not possible
to have constants of other struct types, but a similar effect is provided by static readonly fields.

• Conversions involving simple types can participate in evaluation of conversion operators defined by other
struct types, but a user-defined conversion operator can never participate in evaluation of another user -
defined operator (−6.4.2).

4.1.4 Integral types
C# supports nine integral types: sbyte, byte, short, ushort, int, uint, long, ulong, and char. The
integral types have the following sizes and ranges of values:

• The sbyte type represents signed 8-bit integers with values between × 128 and 127.

• The byte type represents unsigned 8-bit integers with values between 0 and 255.

• The short type represents signed 16-bit integers with values between × 32768 and 32767.

• The ushort type represents unsigned 16-bit integers with values between 0 and 65535.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 4 Types

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 81

• The int type represents signed 32-bit integers with values between × 2147483648 and 2147483647.

• The uint type represents unsigned 32-bit integers with values between 0 and 4294967295.

• The long type represents signed 64-bit integers with values between × 9223372036854775808 and
9223372036854775807.

• The ulong type represents unsigned 64-bit integers with values between 0 and 18446744073709551615.

• The char type represents unsigned 16-bit integers with values between 0 to 65535. The set of possible
values for the char type corresponds to the Unicode character set. Although char has the same
representation as ushort, not all operations permitted on one type are permitted on the other.

The integral-type unary and binary operators always operate with signed 32-bit precision, unsigned 32-bit
precision, signed 64-bit precision, or unsigned 64-bit precision:

• For the unary + and ~ operators, the operand is converted to type T, where T is the first of int, uint, long,
and ulong that can fully represent all possible values of the operand. The operation is then performed using
the precision of type T, and the type of the result is T.

• For the unary’ operator, the operand is converted to type T, where T is the first of int and long that can
fully represent all possible values of the operand. The operation is then performed using the precision of
type T, and the type of the result is T. The unary’ operator cannot be applied to operands of type ulong.

• For the binary +, “, *, /, %, &, ^, |, ==, !=, >, <, >=, and <= operators, the operands are converted to type T,
where T is the first of int, uint, long, and ulong that can fully represent all possible values of both
operands. The operation is then performed using the precision of type T, and the type of the result is T (or
bool for the relational operators). It is not possible for one operand to be of type long and the other to be
of type ulong with the binary operators.

• For the binary << and >> operators, the left operand is converted to type T, where T is the first of int,
uint, long, and ulong that can fully represent all possible values of the operand. The operation is then
performed using the precision of type T, and the type of the result is T.

The char type is classified as an integral type, but it differs from the other integral types in two ways:

• There are no implicit conversions from other types to the char type. In particular, even though the sbyte,
byte, and ushort types have ranges of values that are fully representable using the char type, implicit
conversions from sbyte, byte, or ushort to char do not exist.

• Constants of the char type must be written as character-literals. Character constants can only be written as
integer-literals in combination with a cast. For example, (char)10 is the same as '\x000A'.

The checked and unchecked operators and statements are used to control overflow checking for integral -type
arithmetic operations and conversions (−7.5.12). In a checked context, an overflow produces a compile-time
error or causes a System.OverflowException to be thrown. In an unchecked context, overflows are
ignored and any high-order bits that do not fit in the destination type are discarded.

4.1.5 Floating point types
C# supports two floating point types: float and double. The float and double types are represented using
the 32-bit single-precision and 64-bit double-precision IEEE 754 formats, which provide the following sets of
values:

• Positive zero and negative zero. In most situations, positive zero and negative zero behave identically as the
simple value zero, but certain operations distinguish between the two.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

82 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero
number by zero. For example 1.0 / 0.0 yields positive infinity, and “1.0 / 0.0 yields negative infinity.

• The Not-a-Number value, often abbreviated NaN. NaN§s are produced by invalid floating-point operations,
such as dividing zero by zero.

• The finite set of non-zero values of the form s ≤ m ≤ 2e, where s is 1 or ‘1, and m and e are determined by
the particular floating-point type: For float, 0 < m < 224 and ‘149 � e � 104, and for double, 0 < m < 253
and ‘1075 � e � 970. Denormalized floating-point numbers are considered valid non-zero values.

The float type can represent values ranging from approximately 1.5 ≤ 10‘45 to 3.4 ≤ 1038 with a precision of 7
digits.

The double type can represent values ranging from approximately 5.0 ≤ 10‘324 to 1.7 ≤ 10308 with a precision of
15-16 digits.

If one of the operands of a binary operator is of a floating-point type, then the other operand must be of an
integral type or a floating-point type, and the operation is evaluated as follows:

• If one of the operands is of an integral type, then that operand is converted to the floating-point type of the
other operand.

• Then, if either of the operands is of type double, the other operand is converted to double, the operation is
performed using at least double range and precision, and the type of the result is double (or bool for the
relational operators).

• Otherwise, the operation is performed using at least float range and precision, and the type of the result is
float (or bool for the relational operators).

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in
exceptional situations, floating-point operations produce zero, infinity, or NaN, as described below:

• If the result of a floating-point operation is too small for the destination format, the result of the operation
becomes positive zero or negative zero.

• If the result of a floating-point operation is too large for the destination format, the result of the operation
becomes positive infinity or negative infinity.

• If a floating-point operation is invalid, the result of the operation becomes NaN.

• If one or both operands of a floating-point operation is NaN, the result of the operation becomes NaN.

Floating-point operations may be performed with higher precision than the result type of the operation. For
example, some hardware architectures support an ” extended„ or ” long double„ floating-point type with greater
range and precision than the double type, and implicitly perform all floating-point operations using this higher
precision type. Only at excessive cost in performance can such hardware architectures be made to perform
floating-point operations with less precision, and rather than require an implementation to forfeit both
performance and precision, C# allows a higher precision type to be used for all floating -point operations. Other
than delivering more precise results, this rarely has any measurable effects. However, in expressions of the form
x * y / z, where the multiplication produces a result that is outside the double range, but the subsequent
division brings the temporary result back into the double range, the fact that the expression is evaluated in a
higher range format may cause a finite result to be produced instead of an infinity.

4.1.6 The decimal type
The decimal type is a 128-bit data type suitable for financial and monetary calculations. The decimal type
can represent values ranging from 1.0 ≤ 10‘28 to approximately 7.9 ≤ 1028 with 28-29 significant digits.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 4 Types

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 83

The finite set of values of type decimal are of the form s ≤ m ≤ 10e, where s is 1 or × 1, 0 � m < 296, and ‘28 � e
� 0. The decimal type does not support signed zeros, infinities, or NaN's.

A decimal is represented as a 96-bit integer scaled by a power of ten. For decimals with an absolute value
less than 1.0m, the value is exact to the 28th decimal place, but no further. For decimals with an absolute value
greater than or equal to 1.0m, the value is exact to 28 or 29 digits. Contrary to the float and double data
types, decimal fractional numbers such as 0.1 can be represented exactly in the decimal representation. In the
float and double representations, such numbers are often infinite fractions, making those representations
more prone to round-off errors.

If one of the operands of a binary operator is of type decimal, then the other operand must be of an integral
type or of type decimal. If an integral type operand is present, it is converted to decimal before the operation
is performed.

Operations on values of type decimal are exact to 28 or 29 digits, but to no more than 28 decimal places.
Results are rounded to the nearest representable value, and, when a result is equally close to two representable
values, to the value that has an even number in the least significant digit position.

If a decimal arithmetic operation produces a value that is too small for the decimal f ormat after rounding, the
result of the operation becomes zero. If a decimal arithmetic operation produces a result that is too large for the
decimal format, a System.OverflowException is thrown.

The decimal type has greater precision but smaller range than the floating-point types. Thus, conversions from
the floating-point types to decimal might produce overflow exceptions, and conversions from decimal to the
floating-point types might cause loss of precision. For these reasons, no implicit conversions exi st between the
floating-point types and decimal, and without explicit casts, it is not possible to mix floating-point and
decimal operands in the same expression.

4.1.7 The bool type
The bool type represents boolean logical quantities. The possible values of type bool are true and false.

No standard conversions exist between bool and other types. In particular, the bool type is distinct and
separate from the integral types, and a bool value cannot be used in place of an integral value, nor vice versa.

In the C and C++ languages, a zero integral value or a null pointer can be converted to the boolean value false,
and a non-zero integral value or a non-null pointer can be converted to the boolean value true. In C#, such
conversions are accomplished by explicitly comparing an integral value to zero or explicitly comparing an
object reference to null.

4.1.8 Enumeration types
An enumeration type is a distinct type with named constants. Every enumeration type has an underlying type,
which must be byte, sbyte, short, ushort, int, uint, long or ulong. Enumeration types are defined
through enumeration declarations (−14.1).

4.2 Reference types
A reference type is a class type, an interface type, an array type, or a delegate type.

reference-type:
class-type
interface-type
array-type
delegate-type

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

84 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

class-type:
type-name
object
string

interface-type:
type-name

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsopt]

 dim-separators:
,
dim-separators ,

delegate-type:
type-name

A reference type value is a reference to an instance of the type, the latter known as an object. The special value
null is compatible with all reference types and indicates the absence of an instance.

4.2.1 Class types
A class type defines a data structure that contains data members (constants and fields), function members
(methods, properties, indexers, events, operators, instance constructors, static constructors, and destructors) , and
nested types. Class types support inheritance, a mechanism whereby derived classes can extend and specialize
base classes. Instances of class types are created using object-creation-expressions (−7.5.10.1).

Class types are described in −10.

4.2.2 The object type
The object class type is the ultimate base class of all other types. Every type in C# directly or indirectly
derives from the object class type.

The object keyword is simply an alias for the predefined System.Object class.

4.2.3 The string type
The string type is a sealed class type that inherits directly from object. Instances of the string class
represent Unicode character strings.

Values of the string type can be written as string literals (−2.4.4).

The string keyword is simply an alias for the predefined System.String class.

4.2.4 Interface types
An interface defines a contract. A class or struct that implements an interface must adhere to its contract. An
interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 4 Types

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 85

Interface types are described in −13.

4.2.5 Array types
An array is a data structure that contains a number of variables which are accessed through computed indices.
The variables contained in an array, also called the elements of the array, are all of the same type, and this type
is called the element type of the array.

Array types are described in −12.

4.2.6 Delegate types
A delegate is a data structure that refers to a static method or to an object instance and an instance method of
that object.

The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a function pointer can only
reference static functions, a delegate can reference both static and instance methods. In the latter case, the
delegate stores not only a reference to the method§s entry point, but also a reference to the object instance for
which to invoke the method.

Delegate types are described in −15.

4.3 Boxing and unboxing
Boxing and unboxing is a central concept in C#§s type system. It provides a bridge between value-types and
reference-types by permitting any value of a value-type to be converted to and from type object. Boxing and
unboxing enables a unified view of the type system wherein a value of any type can ultimately be treated as an
object.

4.3.1 Boxing conversions
A boxing conversion permits any value-type to be implicitly converted to the type object or to any interface-
type implemented by the value-type. Boxing a value of a value-type consists of allocating an object instance and
copying the value-type value into that instance.

The actual process of boxing a value of a value-type is best explained by imagining the existence of a boxing
class for that type. For any value-type T, the boxing class would be declared as follows:

class T_Box
{
 T value;

 T_Box(T t) {
 value = t;
 }
}

Boxing of a value v of type T now consists of executing the expression new T_Box(v), and returning the
resulting instance as a value of type object. Thus, the statements

int i = 123;
object box = i;

conceptually correspond to
int i = 123;
object box = new int_Box(i);

Boxing classes like T_Box and int_Box above don§t actually exist and the dynamic type of a boxed value isn§t
actually a class type. Instead, a boxed value of type T has the dynamic type T, and a dynamic type check using
the is operator can simply reference type T. For example,

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

86 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

int i = 123;
object box = i;
if (box is int) {
 Console.Write("Box contains an int");
}

will output the string ” Box contains an int„ on the console.

A boxing conversion implies making a copy of the value being boxed. This is different from a conversion of a
reference-type to type object, in which the value continues to reference the same instance and simply is
regarded as the less derived type object. For example, given the declaration

struct Point
{
 public int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

the following statements
Point p = new Point(10, 10);
object box = p;
p.x = 20;
Console.Write(((Point)box).x);

will output the value 10 on the console because the implicit boxing operation that occurs in the assignment of p
to box causes the value of p to be copied. Had Point been declared a class instead, the value 20 would be
output because p and box would reference the same instance.

4.3.2 Unboxing conversions
An unboxing conversion permits an explicit conversion from type object to any value-type or from any
interface-type to any value-type that implements the interface-type. An unboxing operation consists of first
checking that the object instance is a boxed value of the given value-type, and then copying the value out of the
instance.

Referring to the imaginary boxing class described in the previous section, an unboxing conversion of an object
box to a value-type T consists of executing the expression ((T_Box)box).value. Thus, the statements

object box = 123;
int i = (int)box;

conceptually correspond to
object box = new int_Box(123);
int i = ((int_Box)box).value;

For an unboxing conversion to a given value-type to succeed at run-time, the value of the source operand must
be a reference to an object that was previously created by boxing a value of that value-type. If the source
operand is null or a reference to an incompatible object, a System.InvalidCastException is thrown.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 5 Variables

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 87

5. Variables

Variables represent storage locations. Every variable has a type that determines what values can be stored in the
variable. C# is a type-safe language, and the C# compiler guarantees that values stored in variables are always of
the appropriate type. The value of a variable can be changed through assignment or through use of the ++ and
-- operators.

A variable must be definitely assigned (−5.3) before its value can be obtained.

As described in the following sections, variables are either initially assigned or initially unassigned. An initially
assigned variable has a well-defined initial value and is always considered definitely assigned. An initially
unassigned variable has no initial value. For an initially unassigned variable to be considered definitely assigned
at a certain location, an assignment to the variable must occur in every possible execution path leading to that
location.

5.1 Variable categories
C# defines seven categories of variables: static variables, instance variables, array elements, value parameters,
reference parameters, output parameters, and local variables. The sections that follow describe each of th ese
categories.

In the example
class A
{
 public static int x;
 int y;

 void F(int[] v, int a, ref int b, out int c) {
 int i = 1;
 c = a + b++;
 }
}

x is a static variable, y is an instance variable, v[0] is an array element, a is a value parameter, b is a reference
parameter, c is an output parameter, and i is a local variable.

5.1.1 Static variables
A field declared with the static modifier is called a static variable. A static variable comes into existence
when the type in which it is declared is loaded (−10.11), and ceases to exist when the program terminates.

The initial value of a static variable is the default value (−5.2) of the variable§s type.

For the purpose of definite assignment checking, a static variable is considered initially assigned.

5.1.2 Instance variables
A field declared without the static modifier is called an instance variable.

5.1.2.1 Instance variables in classes
An instance variable of a class comes into existence when a new instance of that class is created, and ceases to
exist when there are no references to that instance and the instance§s destructor (if any) has executed.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

88 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The initial value of an instance variable of a class is the default value (−5.2) of the variable§s type.

For the purpose of definite assignment checking, an instance variable of a class is considered initially assigned.

5.1.2.2 Instance variables in structs
An instance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In other
words, when a variable of a struct type comes into existence or ceases to exist, so too do the instance variables
of the struct.

The initial assignment state of an instance variable of a struct is the same as that of the containing str uct
variable. In other words, when a struct variable is considered initially assigned, so too are its instance variables,
and when a struct variable is considered initially unassigned, its instance variables are likewise unassigned.

5.1.3 Array elements
The elements of an array come into existence when an array instance is created, and cease to exist when there
are no references to that array instance.

The initial value of each of the elements of an array is the default value (−5.2) of the type of the array elements.

For the purpose of definite assignment checking, an array element is considered initially assigned.

5.1.4 Value parameters
A parameter declared without a ref or out modifier is a value parameter.

A value parameter comes into existence upon invocation of the function member (−7.4) to which the parameter
belongs, and is initialized with the value of the argument given in the invocation. A value parameter ceases to
exist upon return of the function member.

For the purpose of definite assignment checking, a value parameter is considered initially assigned.

5.1.5 Reference parameters
A parameter declared with a ref modifier is a reference parameter.

A reference parameter does not create a new storage location. Instead, a reference parameter represents the same
storage location as the variable given as the argument in the function member invocation. Thus, the value of a
reference parameter is always the same as the underlying variable.

The following definite assignment rules apply to reference parameters. Note the different rules for output
parameters described in −5.1.6.

• A variable must be definitely assigned (−5.3) before it can be passed as a reference parameter in a function
member invocation.

• Within a function member, a reference parameter is considered initially assigned.

Within an instance method or instance accessor of a struct type, the this keyword behaves exactly as a
reference parameter of the struct type (−7.5.7).

5.1.6 Output parameters
A parameter declared with an out modifier is an output parameter.

An output parameter does not create a new storage location. Instead, an output parameter represents the same
storage location as the variable given as the argument in the function member invocation. Thus, the value of an
output parameter is always the same as the underlying variable.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 5 Variables

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 89

The following definite assignment rules apply to output parameters. Note the different rules for reference
parameters described in −5.1.5.

• A variable need not be definitely assigned before it can be passed as an output parameter in a function
member invocation.

• Following a function member invocation, each variable that was passed as an output parameter is considered
assigned in that execution path.

• Within a function member, an output parameter is considered initially unassigned.

• Every output parameter of a function member must be definitely assigned (−5.3) before the function
member returns.

Within an instance constructor of a struct type, the this keyword behaves exactly as an output parameter of the
struct type (−7.5.7).

5.1.7 Local variables
A local variable is declared by a local-variable-declaration, which may occur in a block, a for-statement, a
switch-statement, or a using-statement. A local variable comes into existence when control enters the block, for-
statement, switch-statement, or using-statement that immediately contains the local variable declaration. A local
variable ceases to exist when control leaves its immediately containing block, for-statement, switch-statement, or
using-statement.A local variable is not automatically initialized and thus has no default value. For the purpose of
definite assignment checking, a local variable is considered initially unassigned. A local-variable-declaration
may include a variable-initializer, in which case the variable is considered definitely assigned in its entire scope,
except within the expression provided in the variable-initializer.

Within the scope of a local variable, it is an error to refer to the local variable in a textual position that precedes
its variable-declarator.

The phrases ” comes into existence„ and ” ceases to exist„ , as used above, do not refer to implementation. The
actual lifetime of a variable is implementation-dependent. For example, a compiler might statically determine
that a local variable in a block is only used for a small portion of the block, and use this analysis to generate
more efficient code which causes the storage for the variable to have a shorter lifetime than its containing block.

5.2 Default values
The following categories of variables are automatically initialized to their default values :

• Static variables.

• Instance variables of class instances.

• Array elements.

The default value of a variable depends on the type of the variable and is determined as follows:

• For a variable of a value-type, the default value is the same as the value computed by the value-type§s
default constructor (−4.1.1).

• For a variable of a reference-type, the default value is null.

Initialization to default values is typically done by having the memory manager or garbage collector initialize
memory to all-bits-zero before it is allocated for use. For this reason, it is typically convenient for an
implementation to use all-bits-zero to represent the null reference.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

90 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

5.3 Definite assignment
At a given location in the executable code of a function member, a variable is said to be definitely assigned if
the compiler can prove, by static flow analysis, that the variable has been automatically initialized or has been
the target of at least one assignment. The rules of definite assignment are:

• An initially assigned variable (−5.3.1) is always considered definitely assigned.

• An initially unassigned variable (−5.3.2) is considered definitely assigned at a given location if all possible
execution paths leading to that location contain at least one of the following:

o A simple assignment (−7.13.1) in which the variable is the left operand.

o An invocation expression (−7.5.5) or object creation expression (−7.5.10.1) that passes the variable as an
output parameter.

o For a local variable, a local variable declaration (−8.5) that includes a variable initializer.

The definite assignment states of instance variables of a struct-type variable are tracked individually as well as
collectively. In additional to the rules above, the following rules apply to struct-type variables and their instance
variables:

• An instance variable is considered definitely assigned if its containing struct-type variable is considered
definitely assigned.

• A struct-type variable is considered definitely assigned if each of its instance variables are considered
definitely assigned.

Definite assignment is a requirement in the following contexts:

• A variable must be definitely assigned at each location where its value is obtained. This ensures that
undefined values never occur. The occurrence of a variable in an expression is considered to obtain the
value of the variable, except when

o the variable is the left operand of a simple assignment,

o the variable is passed as an output parameter, or

o the variable is a struct-type variable and occurs as the left operand of a member access.

• A variable must be definitely assigned at each location where it is passed as a reference parameter. This
ensures that the function member being invoked can consider the reference parameter initially assigned.

• All output parameters of a function member must be definitely assigned at each location where the function
member returns (through a return statement or through execution reaching the end of the function member
body). This ensures that function members do no return undefined values in output parameters, thus
enabling the compiler to consider a function member invocation that takes a variable as an output parameter
equivalent to an assignment to the variable.

• The this variable of an instance constructor of a struct-type must be definitely assigned at each location
where the constructor returns.

The following example demonstrates how the different blocks of a try statement (−8.10) affect definite
assignment.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 5 Variables

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 91

class A
{
 static void F() {
 int i, j;
 try {
 // neither i nor j definitely assigned
 i = 1;
 // i definitely assigned
 j = 2;
 // i and j definitely assigned
 }
 catch {
 // neither i nor j definitely assigned
 i = 3;
 // i definitely assigned
 }
 finally {
 // neither i nor j definitely assigned
 i = 4;
 // i definitely assigned
 j = 5;
 // i and j definitely assigned
 }
 // i and j definitely assigned
 }
}

The static flow analysis performed to determine the definite assignment state of a variable takes into account the
special behavior of the &&, ||, and ?: operators. In each of the methods in the example

class A
{
 static void F(int x, int y) {
 int i;
 if (x >= 0 && (i = y) >= 0) {
 // i definitely assigned
 }
 else {
 // i not definitely assigned
 }
 // i not definitely assigned
 }

 static void G(int x, int y) {
 int i;
 if (x >= 0 || (i = y) >= 0) {
 // i not definitely assigned
 }
 else {
 // i definitely assigned
 }
 // i not definitely assigned
 }
}

the variable i is considered definitely assigned in one of the embedded statements of an if statement but not in
the other. In the if statement in the F method, the variable i is definitely assigned in the first embedded
statement because execution of the expression (i = y) always precedes execution of this embedded statement.
In contrast, the variable i is not definitely assigned in the second embedded statement since the x >= 0 might
have tested false, resulting in variable i being unassigned. Similarly, in the G method, the variable i is definitely
assigned in the second embedded statement but not in the first embedded statement.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

92 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

5.3.1 Initially assigned variables
The following categories of variables are classified as initially assigned:

• Static variables.

• Instance variables of class instances.

• Instance variables of initially assigned struct variables.

• Array elements.

• Value parameters.

• Reference parameters.

5.3.2 Initially unassigned variables
The following categories of variables are classified as initially unassigned:

• Instance variables of initially unassigned struct variables.

• Output parameters, including the this variable of instance constructors for structs.

• Local variables.

5.4 Variable references
A variable-reference is an expression that is classified as a variable. A variable-reference denotes a storage
location that can be accessed both to fetch the current value and to store a new value. In C and C++, a variable-
reference is known as an lvalue.

variable-reference:
expression

The following constructs require an expression to be a variable-reference:

• The left hand side of an assignment (which may also be a property access or an indexer access).

• An argument passed using ref or out in a method or instance constructor invocation.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 6 Conversions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 93

6. Conversions

A conversion enables an expression of one compile-time type to be treated as another compile-time type.
Conversions can be implicit or explicit, and this determines whether an explicit cast is required. For instance, an
the conversion from type int to type long is implicit, so expressions of type int can implicitly be treated as
type long. The opposite conversion, from type long to type int, is explicit and so an explicit cast is required.

int a = 123;
long b = a; // implicit conversion from int to long
int c = (int) b; // explicit conversion from long to int

Some conversions, including the integral conversions referenced above, are defined by the lan guage. Programs
may also define their own conversions (−6.4).

6.1 Implicit conversions
The following conversions are classified as implicit conversions:

• Identity conversions

• Implicit numeric conversions

• Implicit enumeration conversions.

• Implicit reference conversions

• Boxing conversions

• Implicit constant expression conversions

• User-defined implicit conversions

Implicit conversions can occur in a variety of situations, including function member invocations (−7.4.3), cast
expressions (−7.6.8), and assignments (−7.13).

The pre-defined implicit conversions always succeed and never cause exceptions to be thrown. Properly
designed user-defined implicit conversions should exhibit these characteristics as well.

6.1.1 Identity conversion
An identity conversion converts from any type to the same type. This conversion exists only such that an entity
that already has a required type can be said to be convertible to that type.

6.1.2 Implicit numeric conversions
The implicit numeric conversions are:

• From sbyte to short, int, long, float, double, or decimal.

• From byte to short, ushort, int, uint, long, ulong, float, double, or decimal.

• From short to int, long, float, double, or decimal.

• From ushort to int, uint, long, ulong, float, double, or decimal.

• From int to long, float, double, or decimal.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

94 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• From uint to long, ulong, float, double, or decimal.

• From long to float, double, or decimal.

• From ulong to float, double, or decimal.

• From char to ushort, int, uint, long, ulong, float, double, or decimal.

• From float to double.

Conversions from int, uint, or long to float and from long to double may cause a loss of precision, but
will never cause a loss of magnitude. The other implicit numeric conversions never lose any information.

There are no implicit conversions to the char type. This in particular means that values of the other integral
types do not automatically convert to the char type.

6.1.3 Implicit enumeration conversions
An implicit enumeration conversion permits the decimal-integer-literal 0 to be converted to any enum-type.

6.1.4 Implicit reference conversions
The implicit reference conversions are:

• From any reference-type to object.

• From any class-type S to any class-type T, provided S is derived from T.

• From any class-type S to any interface-type T, provided S implements T.

• From any interface-type S to any interface-type T, provided S is derived from T.

• From an array-type S with an element type SE to an array-type T with an element type TE, provided all of the
following are true:

o S and T differ only in element type. (In other words, S and T have the same number of dimensions.)

o Both SE and TE are reference-types.

o An implicit reference conversion exists from SE to TE.

• From any array-type to System.Array.

• From any delegate-type to System.Delegate.

• From any array-type or delegate-type to System.ICloneable.

• From the null type to any reference-type.

The implicit reference conversions are those conversions between reference-types that can be proven to always
succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted.
In other words, while a reference conversion may change the type of the reference, it never changes the type or
value of the object being referred to.

6.1.5 Boxing conversions
A boxing conversion permits any value-type to be implicitly converted to the type object or to any interface-
type implemented by the value-type. Boxing a value of a value-type consists of allocating an object instance and
copying the value-type value into that instance.

Boxing conversions are described further in −4.3.1.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 6 Conversions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 95

6.1.6 Implicit constant expression conversions
An implicit constant expression conversion permits the following conversions:

• A constant-expression (−7.15) of type int can be converted to type sbyte, byte, short, ushort, uint,
or ulong, provided the value of the constant-expression is within the range of the destination type.

• A constant-expression of type long can be converted to type ulong, provided the value of the constant-
expression is not negative.

6.1.7 User-defined implicit conversions
A user-defined implicit conversion consists of an optional standard implicit conversion, followed by execution
of a user-defined implicit conversion operator, followed by another optional standard implicit conversion. The
exact rules for evaluating user-defined conversions are described in −6.4.3.

6.2 Explicit conversions
The following conversions are classified as explicit conversions:

• All implicit conversions.

• Explicit numeric conversions.

• Explicit enumeration conversions.

• Explicit reference conversions.

• Explicit interface conversions.

• Unboxing conversions.

• User-defined explicit conversions.

Explicit conversions can occur in cast expressions (−7.6.8).

The set of explicit conversions includes all implicit conversions. In particular, this means that redundant cast
expressions are allowed.

The explicit conversions are conversions that cannot be proved to always succeed, conversions that are known
to possibly lose information, and conversions across domains of types sufficiently different to merit explicit
notation.

6.2.1 Explicit numeric conversions
The explicit numeric conversions are the conversions from a numeric-type to another numeric-type for which an
implicit numeric conversion (−6.1.2) does not already exist:

• From sbyte to byte, ushort, uint, ulong, or char.

• From byte to sbyte and char.

• From short to sbyte, byte, ushort, uint, ulong, or char.

• From ushort to sbyte, byte, short, or char.

• From int to sbyte, byte, short, ushort, uint, ulong, or char.

• From uint to sbyte, byte, short, ushort, int, or char.

• From long to sbyte, byte, short, ushort, int, uint, ulong, or char.

• From ulong to sbyte, byte, short, ushort, int, uint, long, or char.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

96 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• From char to sbyte, byte, or short.

• From float to sbyte, byte, short, ushort, int, uint, long, ulong, char, or decimal.

• From double to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or decimal.

• From decimal to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or double.

Because the explicit conversions include all implicit and expl icit numeric conversions, it is always possible to
convert from any numeric-type to any other numeric-type using a cast expression (−7.6.8).

The explicit numeric conversions possibly lose information or possibly cause exception s to be thrown. An
explicit numeric conversion is processed as follows:

• For a conversion from an integral type to another integral type, the processing depends on the overflow
checking context (−7.5.12) in which the conversion takes place:

o In a checked context, the conversion succeeds if the value of the source operand is within the range of
the destination type, but throws an System.OverflowException if the value of the source operand is
outside the range of the destination type.

o In an unchecked context, the conversion always succeeds, and proceeds as follows.

• If the source type is larger than the destination type, then the source value is truncated by discarding
its ” extra„ most significant bits. The result is then treated as a value of the destination type.

• If the source type is smaller than the destination type, then the source value is either sign -extended
or zero-extended so that it is the same size as the destination type. Sign-extension is used if the
source type is signed; zero-extension is used if the source type is unsigned. The result is then treated
as a value of the destination type.

• If the source type is the same size as the destination type, then the source value is treated as a value
of the destination type.

• For a conversion from float, double, or decimal to an integral type, the source value is rounded towards
zero to the nearest integral value, and this integral value becomes the result of the conversion. If the
resulting integral value is outside the range of the destination type, a System.OverflowException is
thrown.

• For a conversion from double to float, the double value is rounded to the nearest float value. If the
double value is too small to represent as a float, the result becomes positive zero or negative zero. If the
double value is too large to represent as a float, the result becomes positive infinity or negative infinity.
If the double value is NaN, the result is also NaN.

• For a conversion from float or double to decimal, the source value is converted to decimal
representation and rounded to the nearest number after the 28 th decimal place if required (−4.1.6). If the
source value is too small to represent as a decimal, the result becomes zero. If the source value is NaN,
infinity, or too large to represent as a decimal, a System.InvalidCastException is thrown.

• For a conversion from decimal to float or double, the decimal value is rounded to the nearest double
or float value. While this conversion may lose precision, it never causes an exception to be thrown.

6.2.2 Explicit enumeration conversions
The explicit enumeration conversions are:

• From sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, or decimal to any
enum-type.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 6 Conversions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 97

• From any enum-type to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double,
or decimal.

• From any enum-type to any other enum-type.

An explicit enumeration conversion between two types is processed by treating any participating enum-type as
the underlying type of that enum-type, and then performing an implicit or explicit numeric conversion between
the resulting types. For example, given an enum-type E with and underlying type of int, a conversion from E to
byte is processed as an explicit numeric conversion (−6.2.1) from int to byte, and a conversion from byte to
E is processed as an implicit numeric conversion (−6.1.2) from byte to int.

6.2.3 Explicit reference conversions
The explicit reference conversions are:

• From object to any reference-type.

• From any class-type S to any class-type T, provided S is a base class of T.

• From any class-type S to any interface-type T, provided S is not sealed and provided S does not implement
T.

• From any interface-type S to any class-type T, provided T is not sealed or provided T implements S.

• From any interface-type S to any interface-type T, provided S is not derived from T.

• From an array-type S with an element type SE to an array-type T with an element type TE, provided all of the
following are true:

o S and T differ only in element type. In other words, S and T have the same number of dimensions.

o Both SE and TE are reference-types.

o An explicit reference conversion exists from SE to TE.

• From System.Array and the interfaces it implements to any array-type.

• From System.Delegate and the interfaces it implements to any delegate-type.

The explicit reference conversions are those conversions between reference -types that require run-time checks
to ensure they are correct.

For an explicit reference conversion to succeed at run-time, the value of the source operand must be null or the
actual type of the object referenced by the source operand must be a type that can be converted to the
destination type by an implicit reference conversion (−6.1.4). If an explicit reference conversion fails, a
System.InvalidCastException is thrown.

Reference conversions, implicit or explicit, never change the referential identity of the object being converted.
In other words, while a reference conversion may change the type of a value, it never changes the value itself.

6.2.4 Unboxing conversions
An unboxing conversion permits an explicit conversion from type object to any value-type or from any
interface-type to any value-type that implements the interface-type. An unboxing operation consists of first
checking that the object instance is a boxed value of the given value-type, and then copying the value out of the
instance.

Unboxing conversions are described further in −4.3.2.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

98 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

6.2.5 User-defined explicit conversions
A user-defined explicit conversion consists of an optional standard explicit conversion, followed by execution of
a user-defined implicit or explicit conversion operator, followed by another optional standard explicit
conversion. The exact rules for evaluating user-defined conversions are described in −6.4.4.

6.3 Standard conversions
The standard conversions are those pre-defined conversions that can occur as part of a user-defined conversion.

6.3.1 Standard implicit conversions
The following implicit conversions are classified as standard implicit conversions:

• Identity conversions (−6.1.1)

• Implicit numeric conversions (−6.1.2)

• Implicit reference conversions (−6.1.4)

• Boxing conversions (−6.1.5)

• Implicit constant expression conversions (−6.1.6)

The standard implicit conversions specifically exclude user -defined implicit conversions.

6.3.2 Standard explicit conversions
The standard explicit conversions are all standard implicit conversions plus the subset of the explicit
conversions for which an opposite standard implicit conversion exists. In other words, if a standard impli cit
conversion exists from a type A to a type B, then a standard explicit conversion exists from type A to type B and
from type B to type A.

6.4 User-defined conversions
C# allows the pre-defined implicit and explicit conversions to be augmented by user-defined conversions. User-
defined conversions are introduced by declaring conversion operators (−10.9.3) in class and struct types.

6.4.1 Permitted user-defined conversions
C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine an
already existing implicit or explicit conversion. A class or struct is permitted to declare a conversion from a
source type S to a target type T only if all of the following are true:

• S and T are different types.

• Either S or T is the class or struct type in which the operator declaration takes place.

• Neither S nor T is object or an interface-type.

• T is not a base class of S, and S is not a base class of T.

The restrictions that apply to user-defined conversions are discussed further in −10.9.3.

6.4.2 Evaluation of user-defined conversions
A user-defined conversion converts a value from its type, called the source type, to another type, called the
target type. Evaluation of a user-defined conversion centers on finding the most specific user-defined
conversion operator for the particular source and target types. This determination is broken into several steps:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 6 Conversions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 99

• Finding the set of classes and structs from which user-defined conversion operators will be considered. This
set consists of the source type and its base classes and the target type and its base classes (with the implicit
assumptions that only classes and structs can declare user-defined operators, and that non-class types have
no base classes).

• From that set of types, determining which user-defined conversion operators are applicable. For a
conversion operator to be applicable, it must be possible to perform a standard conversion (−6.3) from the
source type to the operand type of the operator, and it must be possible to perform a standard conversion
from the result type of the operator to the target type.

• From the set of applicable user-defined operators, determining which operator is unambiguously the most
specific. In general terms, the most specific operator is the operator whose operand type is ” closest„ to the
source type and whose result type is ” closest„ to the target type. The exact rules for establishing the most
specific user-defined conversion operator are defined in the following sections.

Once a most specific user-defined conversion operator has been identified, the actual execution of the user -
defined conversion involves up to three steps:

• First, if required, performing a standard conversion from the source type to the operand type of the user-
defined conversion operator.

• Next, invoking the user-defined conversion operator to perform the conversion.

• Finally, if required, performing a standard conversion from the result type of the user -defined conversion
operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined conversion operator. In
other words, a conversion from type S to type T will never first execute a user-defined conversion from S to X
and then execute a user-defined conversion from X to T.

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the following
sections. The definitions make use of the following terms:

• If a standard implicit conversion (−6.3.1) exists from a type A to a type B, and if neither A nor B are
interface-types, then A is said to be encompassed by B, and B is said to encompass A.

• The most encompassing type in a set of types is the one type that encompasses all other types in the set. If
no single type encompasses all other types, then the set has no most encompassing type. In more intuitive
terms, the most encompassing type is the ” largest„ type in the set’ the one type to which each of the other
types can be implicitly converted.

• The most encompassed type in a set of types is the one type that is encompassed by all other types in the set.
If no single type is encompassed by all other types, then the set has no most encompassed type. In more
intuitive terms, the most encompassed type is the ” smallest„ type in the set’ the one type that can be
implicitly converted to each of the other types.

6.4.3 User-defined implicit conversions
A user-defined implicit conversion from type S to type T is processed as follows:

• Find the set of types, D, from which user-defined conversion operators will be considered. This set consists
of S (if S is a class or struct), the base classes of S (if S is a class), T (if T is a class or struct), and the base
classes of T (if T is a class).

• Find the set of applicable user-defined conversion operators, U. This set consists of the user-defined implicit
conversion operators declared by the classes or structs in D that convert from a type encompassing S to a
type encompassed by T. If U is empty, the conversion is undefined and an error occurs.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

100 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• Find the most specific source type, SX, of the operators in U:

o If any of the operators in U convert from S, then SX is S.

o Otherwise, SX is the most encompassed type in the combined set of source types of the operators in U. If
no most encompassed type can be found, then the conversion is ambiguous and an error occurs.

• Find the most specific target type, TX, of the operators in U:

o If any of the operators in U convert to T, then TX is T.

o Otherwise, TX is the most encompassing type in the combined set of target types of the operators in U. If
no most encompassing type can be found, then the conversion is ambiguous and an error occurs.

• If U contains exactly one user-defined conversion operator that converts from SX to TX, then this is the most
specific conversion operator. If no such operator exists, or if more than one such operator exists, then the
conversion is ambiguous and an error occurs. Otherwise, the user-defined conversion is applied:

o If S is not SX, then a standard implicit conversion from S to SX is performed.

o The most specific user-defined conversion operator is invoked to convert from SX to TX.

o If TX is not T, then a standard implicit conversion from TX to T is performed.

6.4.4 User-defined explicit conversions
A user-defined explicit conversion from type S to type T is processed as follows:

• Find the set of types, D, from which user-defined conversion operators will be considered. This set consists
of S (if S is a class or struct), the base classes of S (if S is a class), T (if T is a class or struct), and the base
classes of T (if T is a class).

• Find the set of applicable user-defined conversion operators, U. This set consists of the user-defined implicit
or explicit conversion operators declared by the classes or structs in D that convert from a type
encompassing or encompassed by S to a type encompassing or encompassed by T. If U is empty, the
conversion is undefined and an error occurs.

• Find the most specific source type, SX, of the operators in U:

o If any of the operators in U convert from S, then SX is S.

o Otherwise, if any of the operators in U convert from types that encompass S, then SX is the most
encompassed type in the combined set of source types of those operators. If no most encompassed type
can be found, then the conversion is ambiguous and an error occurs.

o Otherwise, SX is the most encompassing type in the combined set of source types of the operators in U. If
no most encompassing type can be found, then the conversion is ambiguous and an error occurs.

• Find the most specific target type, TX, of the operators in U:

o If any of the operators in U convert to T, then TX is T.

o Otherwise, if any of the operators in U convert to types that are encompassed by T, then TX is the most
encompassing type in the combined set of source types of those operators. If no most encompassing
type can be found, then the conversion is ambiguous and an error occurs.

o Otherwise, TX is the most encompassed type in the combined set of target types of the operators in U. If
no most encompassed type can be found, then the conversion is ambiguous and an error occurs.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 6 Conversions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 101

• If U contains exactly one user-defined conversion operator that converts from SX to TX, then this is the most
specific conversion operator. If no such operator exists, or if more than one such operator exists, then the
conversion is ambiguous and an error occurs. Otherwise, the user-defined conversion is applied:

o If S is not SX, then a standard explicit conversion from S to SX is performed.

o The most specific user-defined conversion operator is invoked to convert from SX to TX.

o If TX is not T, then a standard explicit conversion from TX to T is performed.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 103

7. Expressions

An expression is a sequence of operators and operands that specifies computation of a value, or that desig nates a
variable or constant. This chapter defines the syntax, order of evaluation of operands and operators, and
meaning of expressions.

7.1 Expression classifications
An expression is classified as one of the following:

• A value. Every value has an associated type.

• A variable. Every variable has an associated type, namely the declared type of the variable.

• A namespace. An expression with this classification can only appear as the left hand side of a member-
access (−7.5.4). In any other context, an expression classified as a namespace causes an error.

• A type. An expression with this classification can only appear as the left hand side of a member-access
(−7.5.4), or as an operand for the as operator (−7.9.10), the is operator (−7.9.9), or the typeof operator
(−7.5.11). In any other context, an expression classified as a type causes an error.

• A method group, which is a set of overloaded methods resulting from a member lookup (−7.3). A method
group may have an associated instance expression. When an instance method is invoked, the result of
evaluating the instance expression becomes the instance represented by this (−7.5.7). A method group is
only permitted in an invocation-expression (−7.5.5) or a delegate-creation-expression (−7.5.10.3). In any
other context, an expression classified as a method group causes an error.

• A property access. Every property access has an associated type, namely the type of the property.
Furthermore, a property access may have an associated instance expression. When an accessor (the get or
set block) of an instance property access is invoked, the result of evaluating the instance expression
becomes the instance represented by this (−7.5.7).

• An event access. Every event access has an associated type, namely the type of the event. Furthermore, an
event access may have an associated instance expression. An event access may appear as the left hand
operand of the += and -= operators (−7.13.3). In any other context, an expression classified as an event
access causes an error.

• An indexer access. Every indexer access has an associated type, namely the element type of the indexer.
Furthermore, an indexer access has an associated instance expression and an associated argument list. When
an accessor (the get or set block) of an indexer access is invoked, the result of evaluating the instance
expression becomes the instance represented by this (−7.5.7), and the result of evaluating the argument list
becomes the parameter list of the invocation.

• Nothing. This occurs when the expression is an invocation of a method with a return type of void. An
expression classified as nothing is only valid in the context of a statement-expression (−8.6).

The final result of an expression is never a namespace, type, method group, or event access. Rather, as noted
above, these categories of expressions are intermediate constructs that are only permitted in certain contexts.

A property access or indexer access is always reclassified as a value by performing an invocation of the get-
accessor or the set-accessor. The particular accessor is determined by the context of the property or indexer

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

104 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

access: If the access is the target of an assignment, the set-accessor is invoked to assign a new value (−7.13.1).
Otherwise, the get-accessor is invoked to obtain the current value (−7.1.1).

7.1.1 Values of expressions
Most of the constructs that involve an expression ult imately require the expression to denote a value. In such
cases, if the actual expression denotes a namespace, a type, a method group, or nothing, an error occurs.
However, if the expression denotes a property access, an indexer access, or a variable, the value of the property,
indexer, or variable is implicitly substituted:

• The value of a variable is simply the value currently stored in the storage location identified by the variable.
A variable must be considered definitely assigned (−5.3) before its value can be obtained, or otherwise a
compile-time error occurs.

• The value of a property access expression is obtained by invoking the get-accessor of the property. If the
property has no get-accessor, an error occurs. Otherwise, a function member invocation (−7.4.3) is
performed, and the result of the invocation becomes the value of the property access expression.

• The value of an indexer access expression is obtained by invoking the get-accessor of the indexer. If the
indexer has no get-accessor, an error occurs. Otherwise, a function member invocation (−7.4.3) is performed
with the argument list associated with the indexer access expression, and the result of the invocation
becomes the value of the indexer access expression.

7.2 Operators
Expressions are constructed from operands and operators. The operators of an expression indicate which
operations to apply to the operands. Examples of operators include +, -, *, /, and new. Examples of operands
include literals, fields, local variables, and expressions.

There are three types of operators:

• Unary operators. The unary operators take one operand and use either prefix notation (such as “x) or postfix
notation (such as x++).

• Binary operators. The binary operators take two operands and all use infix notation (such as x + y).

• Ternary operator. Only one ternary operator, ?:, exists. The ternary operator takes three operands and uses
infix notation (c? x: y).

The order of evaluation of operators in an expression is determined by the precedence and associativity of the
operators (−7.2.1).

Operands in an expression are evaluated from left to right. For example, in F(i) + G(i++) * H(i), method
F is called using the old value of i, then method G is called with the old value of i, and, finally, method H is
called with the new value of i. This is separate from and unrelated to operator precedence.

Certain operators can be overloaded. Operator overloading permits user-defined operator implementations to be
specified for operations where one or both of the operands are of a user-defined class or struct type (−7.2.2).

7.2.1 Operator precedence and associativity
When an expression contains multiple operators, the precedence of the operators control the order in which the
individual operators are evaluated. For example, the expression x + y * z is evaluated as x + (y * z) because
the * operator has higher precedence than the + operator. The precedence of an operator is established by the
definition of its associated grammar production. For example, an additive-expression consists of a sequence of
multiplicative-expressions separated by + or - operators, thus giving the + and - operators lower precedence
than the *, /, and % operators.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 105

The following table summarizes all operators in order of precedence from highest to lowest:

Section Category Operators

7.5 Primary x.y f(x) a[x] x++ x-- new

typeof checked unchecked

7.6 Unary + - ! ~ ++x --x (T)x

7.7 Multiplicative * / %

7.7 Additive + -

7.8 Shift << >>

7.9 Relational and
type testing

< > <= >= is as

7.9 Equality == !=

7.10 Logical AND &

7.10 Logical XOR ^

7.10 Logical OR |

7.11 Conditional AND &&

7.11 Conditional OR ||

7.12 Conditional ?:

7.13 Assignment = *= /= %= += -= <<= >>= &= ^= |=

When an operand occurs between two operators with the same precedence, the associativity of the operators
controls the order in which the operations are performed:

• Except for the assignment operators, all binary operators are left-associative, meaning that operations are
performed from left to right. For example, x + y + z is evaluated as (x + y) + z.

• The assignment operators and the conditional operator (?:) are right-associative, meaning that operations
are performed from right to left. For example, x = y = z is evaluated as x = (y = z).

Precedence and associativity can be controlled using parentheses. For example, x + y * z first multiplies y by z
and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z.

7.2.2 Operator overloading
All unary and binary operators have predefined implementations that are automatically available in any
expression. In addition to the predefined implementations, user-defined implementations can be introduced by
including operator declarations in classes and structs (−10.9). User-defined operator implementations always
take precedence over predefined operator implementations: Only when no applicable user-defined operator
implementations exist will the predefined operator implementations be considered.

The overloadable unary operators are:
+ - ! ~ ++ -- true false

The overloadable binary operators are:
+ - * / % & | ^ << >> == != > < >= <=

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

106 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

Only the operators listed above can be overloaded. In particular, it is not possible to overload member access,
method invocation, or the =, &&, ||, ?:, new, typeof, is, as, checked, and unchecked operators.

When a binary operator is overloaded, the corresponding assignment operator (if any) is also implicitly
overloaded. For example, an overload of operator * is also an overload of operator *=. This is described further
in −7.13. Note that the assignment operator itself (=) cannot be overloaded. An assignment always performs a
simple bit-wise copy of a value into a variable.

Cast operations, such as (T)x, are overloaded by providing user-defined conversions (−6.4).

Element access, such as a[x], is not considered an overloadable operator. Instead, user-defined indexing is
supported through indexers (−10.8).

In expressions, operators are referenced using operator notation, and in declarations, operators are referenced
using functional notation. The following table shows the relationship between operator and functional notations
for unary and binary operators. In the first entry, op denotes any overloadable unary prefix operator. In the
second entry, op denotes the unary postfix ++ and -- operators. In the third entry, op denotes any overloadable
binary operator.

Operator notation Functional notation

op x operator op(x)

x op operator op(x)

x op y operator op(x, y)

User-defined operator declarations always require at least one of the parameters to be of the class or struct type
that contains the operator declaration. Thus, it is not possible for a user -defined operator to have the same
signature as a predefined operator.

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator. For
example, the * operator is always a binary operator, always has the precedence level specified in −7.2.1, and is
always left-associative.

While it is possible for a user-defined operator to perform any computation it pleases, implementations that
produce results other than those that are intuitively expected are strongly discouraged. For example, an
implementation of operator == should compare the two operands for equality and return an appropriate result.

The descriptions of individual operators in −7.5 through −7.13 specify the predefined implementations of the
operators and any additional rules that apply to each operator. The descriptions make use of the terms unary
operator overload resolution, binary operator overload resolution, and numeric promotion, definitions of
which are found in the following sections.

7.2.3 Unary operator overload resolution
An operation of the form op x or x op, where op is an overloadable unary operator, and x is an expression of
type X, is processed as follows:

• The set of candidate user-defined operators provided by X for the operation operator op(x) is determined
using the rules of −7.2.5.

• If the set is not empty, then this becomes the set of candidate operators for the operation. Otherwise, the
predefined unary operator op implementations become the set of candidate operators for the operation.
The predefined implementations of a given operator are specified in the description of the operator (−7.5 and
−7.6).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 107

• The overload resolution rules of −7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x), and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, an error occurs.

7.2.4 Binary operator overload resolution
An operation of the form x op y, where op is an overloadable binary operator, x is an expression of type X, and
y is an expression of type Y, is processed as follows:

• The set of candidate user-defined operators provided by X and Y for the operation operator op(x, y) is
determined. The set consists of the union of the candidate operators provided by X and the candidate
operators provided by Y, each determined using the rules of −7.2.5. If X and Y are the same type, or if X and
Y are derived from a common base type, then shared candidate operators only occur in the combined set
once.

• If the set is not empty, then this becomes the set of candidate operators for the operation. Otherwise, the
predefined binary operator op implementations become the set of candidate operators for the operation.
The predefined implementations of a given operator are specified in the description of the o perator (−7.7
through −7.13).

• The overload resolution rules of −7.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x, y), and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, an error occurs.

7.2.5 Candidate user-defined operators
Given a type T and an operation operator op(A), where op is an overloadable operator and A is an argument
list, the set of candidate user-defined operators provided by T for operator op(A) is determined as follows:

• For all operator op declarations in T, if at least one operator is applicable (−7.4.2.1) with respect to the
argument list A, then the set of candidate operators consists of all applicable operator op declarations in T.

• Otherwise, if T is object, the set of candidate operators is empty.

• Otherwise, the set of candidate operators provided by T is the set of candidate operators provided by the
direct base class of T.

7.2.6 Numeric promotions
Numeric promotion consists of automatically performing certain implicit conversions of the operands of the
predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but rather an
effect of applying overload resolution to the predefined operators. Numeric promotion specifically does not
affect evaluation of user-defined operators, although user-defined operators can be implemented to exhibit
similar effects.

As an example of numeric promotion, consider the predefined implementations of the binary * operator:
int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);
float operator *(float x, float y);
double operator *(double x, double y);
decimal operator *(decimal x, decimal y);

When overload resolution rules (−7.4.2) are applied to this set of operators, the effect is to select the first of the
operators for which implicit conversions exist from the operand types. For example, for the operation b * s,
where b is a byte and s is a short, overload resolution selects operator *(int, int) as the best operator.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

108 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

Thus, the effect is that b and s are converted to int, and the type of the result is int. Likewise, for the
operation i * d, where i is an int and d is a double, overload resolution selects operator *(double,
double) as the best operator.

7.2.6.1 Unary numeric promotions
Unary numeric promotion occurs for the operands of the predefined +, “, and ~ unary operators. Unary numeric
promotion simply consists of converting operands of type sbyte, byte, short, ushort, or char to type int.
Additionally, for the unary “ operator, unary numeric promotion converts operands of type uint to type long.

7.2.6.2 Binary numeric promotions
Binary numeric promotion occurs for the operands of the predefined +, “, *, /, %, &, |, ^, ==, !=, >, <, >=, and
<= binary operators. Binary numeric promotion implicitly converts both operands to a common type which, in
case of the non-relational operators, also becomes the result type of the operation. Binary numeric promotion
consists of applying the following rules, in the order they appear here:

• If either operand is of type decimal, the other operand is converted to type decimal, or an error occurs if
the other operand is of type float or double.

• Otherwise, if either operand is of type double, the other operand is converted to type double.

• Otherwise, if either operand is of type float, the other operand is converted to type float.

• Otherwise, if either operand is of type ulong, the other operand is converted to type ulong, or an error
occurs if the other operand is of type sbyte, short, int, or long.

• Otherwise, if either operand is of type long, the other operand is converted to type long.

• Otherwise, if either operand is of type uint and the other operand is of type sbyte, short, or int, both
operands are converted to type long.

• Otherwise, if either operand is of type uint, the other operand is converted to type uint.

• Otherwise, both operands are converted to type int.

Note that the first rule disallows any operations that mix the decimal type with the double and float types.
The rule follows from the fact that there are no implicit conversions between the decimal type and the double
and float types.

Also note that it is not possible for an operand to be of type ulong when the other operand is of a signed
integral type. The reason is that no integral type exists that can represent the full range of ulong as well as the
signed integral types.

In both of the above cases, a cast expression can be used to explicitly convert one operand to a type that is
compatible with the other operand.

In the example
decimal AddPercent(decimal x, double percent) {
 return x * (1.0 + percent / 100.0);
}

a compile-time error occurs because a decimal cannot be multiplied by a double. The error is resolved by
explicitly converting the second operand to decimal:

decimal AddPercent(decimal x, double percent) {
 return x * (decimal)(1.0 + percent / 100.0);
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 109

7.3 Member lookup
A member lookup is the process whereby the meaning of a name in the context of a type is determined. A
member lookup may occur as part of evaluating a simple-name (−7.5.2) or a member-access (−7.5.4) in an
expression.

A member lookup of a name N in a type T is processed as follows:

• First, the set of all accessible (−3.5) members named N declared in T and the base types (−7.3.1) of T is
constructed. Declarations that include an override modifier are excluded from the set. If no members
named N exist and are accessible, then the lookup produces no match, and the following steps are not
evaluated.

• Next, members that are hidden by other members are removed from the set. For every member S.M in the
set, where S is the type in which the member M is declared, the following rules are applied:

o If M is a constant, field, property, event, type, or enumeration member, then all members declared in a
base type of S are removed from the set.

o If M is a method, then all non-method members declared in a base type of S are removed from the set,
and all methods with the same signature as M declared in a base type of S are removed from the set.

• Finally, having removed hidden members, the result of the lookup is determined:

o If the set consists of a single non-method member, then this member is the result of the lookup.

o Otherwise, if the set contains only methods, then this group of methods is the result of the lookup.

o Otherwise, the lookup is ambiguous, and a compile-time error occurs (this situation can only occur for a
member lookup in an interface that has multiple direct base inter faces).

For member lookups in types other than interfaces, and member lookups in interfaces that are strictly single -
inheritance (each interface in the inheritance chain has exactly zero or one direct base interface), the effect of the
lookup rules is simply that derived members hide base members with the same name or signature. Such single -
inheritance lookups are never ambiguous. The ambiguities that can possibly arise from member lookups in
multiple-inheritance interfaces are described in −13.2.5.

7.3.1 Base types
For purposes of member lookup, a type T is considered to have the following base types:

• If T is object, then T has no base type.

• If T is a value-type, the base type of T is the class type object.

• If T is a class-type, the base types of T are the base classes of T, including the class type object.

• If T is an interface-type, the base types of T are the base interfaces of T and the class type object.

• If T is an array-type, the base types of T are the class types System.Array and object.

• If T is a delegate-type, the base types of T are the class types System.Delegate and object.

7.4 Function members
Function members are members that contain executable statements. Function members are always members of
types and cannot be members of namespaces. C# defines the following categories of function members:

• Methods

• Properties

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

110 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• Events

• Indexers

• User-defined operators

• Instance constructors

• Static constructors

• Destructors

The statements contained in function members are executed through function member invocations. The actual
syntax for writing a function member invocation depends on the particular function member category. However,
all function member invocations are expressions, allow arguments to be passed to the function member, and
allow the function member to compute and return a result.

The argument list (−7.4.1) of a function member invocation provides actual values or variable references for the
parameters of the function member.

Invocations of constructors, methods, indexers, and operators employ overload resolution to determine which of
a candidate set of function members to invoke. This process is described in −7.4.2.

Once a particular function member has been identified at compile-time, possibly through overload resolution,
the actual run-time process of invoking the function member is described in −7.4.3.

The following table summarizes the processing that takes place in constructs involving the five ca tegories of
function members. In the table, e, x, y, and value indicate expressions classified as variables or values, T
indicates an expression classified as a type, F is the simple name of a method, and P is the simple name of a
property.

Construct Example Description

Constructor
invocation

new T(x, y) Overload resolution is applied to select the best constructor in
the class or struct T. The constructor is invoked with the
argument list (x, y).

F(x, y) Overload resolution is applied to select the best method F in the
containing class or struct. The method is invoked with the
argument list (x, y). If the method is not static, the instance
expression is this.

T.F(x, y) Overload resolution is applied to select the best method F in the
class or struct T. An error occurs if the method is not static.
The method is invoked with the argument list (x, y).

Method
invocation

e.F(x, y) Overload resolution is applied to select the best method F in the
class, struct, or interface given by the type of e. An error occurs
if the method is static. The method is invoked with the
instance expression e and the argument list (x, y).

Property
access

P The get accessor of the property P in the containing class or
struct is invoked. An error occurs if P is write-only. If P is not
static, the instance expression is this.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 111

Construct Example Description
P = value The set accessor of the property P in the containing class or

struct is invoked with the argument list (value). An error
occurs if P is read-only. If P is not static, the instance
expression is this.

T.P The get accessor of the property P in the class or struct T is
invoked. An error occurs if P is not static or if P is write-
only.

T.P = value The set accessor of the property P in the class or struct T is
invoked with the argument list (value). An error occurs if P
is not static or if P is read-only.

e.P The get accessor of the property P in the class, struct, or
interface given by the type of e is invoked with the instance
expression e. An error occurs if P is static or if P is write-
only.

e.P = value The set accessor of the property P in the class, struct, or
interface given by the type of e is invoked with the instance
expression e and the argument list (value). An error occurs if
P is static or if P is read-only.

E += value The add accessor of the event E in the containing class or struct
is invoked. If E is not static, the instance expression is this.

E -= value The remove accessor of the event E in the containing class or
struct is invoked. If E is not static, the instance expression is
this.

T.E += value The add accessor of the event E in the class or struct T is
invoked. An error occurs if E is not static.

T.E -= value The remove accessor of the event E in the class or struct T is
invoked. An error occurs if E is not static.

e.E += value The add accessor of the event E in the class, struct, or interface
given by the type of e is invoked with the instance expression
e. An error occurs if E is static.

Event access

e.E -= value The remove accessor of the event E in the class, struct, or
interface given by the type of e is invoked with the instance
expression e. An error occurs if E is static.

Indexer
access

e[x, y] Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The get
accessor of the indexer is invoked with the instance expression
e and the argument list (x, y). An error occurs if the indexer
is write-only.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

112 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

Construct Example Description

 e[x, y] = value Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The set
accessor of the indexer is invoked with the instance expression
e and the argument list (x, y, value). An error occurs if the
indexer is read-only.

-x Overload resolution is applied to select the best unary operator
in the class or struct given by the type of x. The selected
operator is invoked with the argument list (x).

Operator
invocation

x + y Overload resolution is applied to select the best binary operator
in the classes or structs given by the types of x and y. The
selected operator is invoked with the argument list (x, y).

7.4.1 Argument lists
Every function member invocation includes an argument list which provides actual values or variable references
for the parameters of the function member. The syntax for specifying the argument list of a function member
invocation depends on the function member category:

• For methods, instance constructors, and delegates, the arguments are specified as an argument-list, as
described below.

• For properties, the argument list is empty when invoking the get accessor, and consists of the expression
specified as the right operand of the assignment operator when invoking the set accessor.

• For events, the argument list consists of the expression specified as the right operand of the += or -=
operator.

• For indexers, the argument list consists of the expressions specified between the square brackets in the
indexer access. When invoking the set accessor, the argument list additionally includes the expression
specified as the right operand of the assignment operator.

• For user-defined operators, the argument list consists of the single operand of the unary operator or the two
operands of the binary operator.

The arguments of volatile fields (−10.4.3), properties (−10.6), events (−10.7), indexers (−10.8), and user-defined
operators (−10.9) are always passed as value parameters (−10.5.1.1). Reference and output parameters are not
supported for these categories of function members.

The arguments of a method, instance constructor, or delegate invocation are specified as an argument-list:

argument-list:
argument
argument-list , argument

argument:
expression
ref variable-reference
out variable-reference

An argument-list consists of zero or more arguments, separated by commas. Each argument can take one of the
following forms:

• An expression, indicating that the argument is passed as a value parameter (−10.5.1.1).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 113

• The keyword ref followed by a variable-reference (−5.4), indicating that the argument is passed as a
reference parameter (−10.5.1.2). A variable must be definitely assigned (−5.3) before it can be passed as a
reference parameter.

• The keyword out followed by a variable-reference (−5.4), indicating that the argument is passed as an
output parameter (−10.5.1.3). A variable is considered definitely assigned (−5.3) following a function
member invocation in which the variable is passed as an output parameter.

During the run-time processing of a function member invocation (−7.4.3), the expressions or variable references
of an argument list are evaluated in order, from left to right, as follows:

• For a value parameter, the argument expression is evaluated and an implicit convers ion (−6.1) to the
corresponding parameter type is performed. The resulting value becomes the initial value of the value
parameter in the function member invocation.

• For a reference or output parameter, the variable reference is evaluated and the resulting storage location
becomes the storage location represented by the parameter in the function member invocation. If the
variable reference given as a reference or output parameter is an array element of a reference-type, a run-
time check is performed to ensure that element type of the array is identical to the type of the parameter. If
this check fails, a System.ArrayTypeMismatchException is thrown.

Methods, indexers, and instance constructors may declare their right -most parameter to be a parameter array
(−10.5.1.4). Such function members are invoked either in their normal form or in their expanded form depending
on which is applicable (−7.4.2.1):

• When a function member with a parameter array is invoked in its normal form, the argument given for the
parameter array must be a single expression of a type that is implicitly convertible (−6.1) to the parameter
array type. In this case, the parameter array acts precisely like a value parameter.

• When a function member with a parameter array is invoked in its expanded form, the invocation must
specify zero or more arguments for the parameter array, where each argument is an expression of a type that
is implicitly convertible (−6.1) to the element type of the parameter array. In this case, the invocation creates
an instance of the parameter array type with a length corresponding to the number of arguments, initializes
the elements of the array instance with the given argument values, and uses the newly created array instance
as the actual argument.

The expressions of an argument list are always evaluated in the order they are written. Thus, the example
class Test
{
 static void F(int x, int y, int z) {
 Console.WriteLine("x = {0}, y = {1}, z = {2}", x, y, z);
 }

 static void Main() {
 int i = 0;
 F(i++, i++, i++);
 }
}

produces the output
x = 0, y = 1, z = 2

The array co-variance rules (−12.5) permit a value of an array type A[] to be a reference to an instance of an
array type B[], provided an implicit reference conversion exists from B to A. Because of these rules, when an
array element of a reference-type is passed as a reference or output parameter, a run-time check is required to
ensure that the actual element type of the array is identical to that of the parameter. In the example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

114 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

class Test
{
 static void F(ref object x) {...}

 static void Main() {
 object[] a = new object[10];
 object[] b = new string[10];
 F(ref a[0]); // Ok
 F(ref b[1]); // ArrayTypeMismatchException
 }
}

the second invocation of F causes a System.ArrayTypeMismatchException to be thrown because the
actual element type of b is string and not object.

When a function member with a parameter array is invoked in its expanded form, the invocation is processed
exactly as if an array creation expression with an array initializer (−7.5.10.2) was inserted around the expanded
parameters. For example, given the declaration

void F(int x, int y, params object[] args);

the following invocations of the expanded form of the method
F(10, 20);
F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

correspond exactly to
F(10, 20, new object[] {});
F(10, 20, new object[] {30, 40});
F(10, 20, new object[] {1, "hello", 3.0});

Note in particular that an empty array is created when there are zero arguments given for the parameter array.

7.4.2 Overload resolution
Overload resolution is a compile-time mechanism for selecting the best function member to invoke given an
argument list and a set of candidate function members. Overload resolution selects the function member to
invoke in the following distinct contexts within C#:

• Invocation of a method named in an invocation-expression (−7.5.5).

• Invocation of an instance constructor named in an object-creation-expression (−7.5.10.1).

• Invocation of an indexer accessor through an element-access (−7.5.6).

• Invocation of a predefined or user-defined operator referenced in an expression (−7.2.3 and −7.2.4).

Each of these contexts defines the set of candidate function members and the list of arguments in its own unique
way. However, once the candidate function members and the argument list have been identified, the selection of
the best function member is the same in all cases:

• First, the set of candidate function members is reduced to those function members t hat are applicable with
respect to the given argument list (−7.4.2.1). If this reduced set is empty, an error occurs.

• Then, given the set of applicable candidate function members, the best function member in that set is
located. If the set contains only one function member, then that function member is the best function
member. Otherwise, the best function member is the one function member that is better than all other
function members with respect to the given argument list, provided that each function member is compared
to all other function members using the rules in −7.4.2.2. If there is not exactly one function member that is
better than all other function members, then the function member invoca tion is ambiguous and an error
occurs.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 115

The following sections define the exact meanings of the terms applicable function member and better function
member.

7.4.2.1 Applicable function member
A function member is said to be an applicable function member with respect to an argument list A when all of
the following are true:

• The number of arguments in A is identical to the number of parameters in the function member declaration.

• For each argument in A, the parameter passing mode of the argument is identical to the parameter passing
mode of the corresponding parameter, and

o for a value parameter or a parameter array, an implicit conversion (−6.1) exists from the type of the
argument to the type of the corresponding parameter, or

o for a ref or out parameter, the type of the argument is identical to the type of the corresponding
parameter.

For a function member that includes a parameter array, if the function member is applicable by the above rules,
it is said to be applicable in its normal form. If a function member that includes a parameter array is not
applicable in its normal form, the function member may instead be applicable in its expanded form:

• The expanded form is constructed by replacing the parameter array in the function member declara tion with
zero or more value parameters of the element type of the parameter array such that the number of arguments
in the argument list A matches the total number of parameters. If A has fewer arguments than the number of
fixed parameters in the function member declaration, the expanded form of the function member cannot be
constructed and is thus not applicable.

• If the class, struct, or interface in which the function member is declared already contains another applicable
function member with the same signature as the expanded form, the expanded form is not applicable.

• Otherwise, the expanded form is applicable if for each argument in A the parameter passing mode of the
argument is identical to the parameter passing mode of the corresponding parameter, an d

o for a fixed value parameter or a value parameter created by the expansion, an implicit conversion (−6.1)
exists from the type of the argument to the type of the corresponding parameter, or

o for a ref or out parameter, the type of the argument is identical to the type of the corresponding
parameter.

7.4.2.2 Better function member
Given an argument list A with a set of argument types A1, A2, ..., AN and two applicable function members MP and
MQ with parameter types P1, P2, ..., PN and Q1, Q2, ..., QN, MP is defined to be a better function member than MQ if

• for each argument, the implicit conversion from AX to PX is not worse than the implicit conversion from AX to
QX, and

• for at least one argument, the conversion from AX to PX is better than the conversion from AX to QX.

When performing this evaluation, if MP or MQ is applicable in its expanded form, then PX or QX refers to a
parameter in the expanded form of the parameter list.

7.4.2.3 Better conversion
Given an implicit conversion C1 that converts from a type S to a type T1, and an implicit conversion C2 that
converts from a type S to a type T2, the better conversion of the two conversions is determined as follows:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

116 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• If T1 and T2 are the same type, neither conversion is better.

• If S is T1, C1 is the better conversion.

• If S is T2, C2 is the better conversion.

• If an implicit conversion from T1 to T2 exists, and no implicit conversion from T2 to T1 exists, C1 is the better
conversion.

• If an implicit conversion from T2 to T1 exists, and no implicit conversion from T1 to T2 exists, C2 is the better
conversion.

• If T1 is sbyte and T2 is byte, ushort, uint, or ulong, C1 is the better conversion.

• If T2 is sbyte and T1 is byte, ushort, uint, or ulong, C2 is the better conversion.

• If T1 is short and T2 is ushort, uint, or ulong, C1 is the better conversion.

• If T2 is short and T1 is ushort, uint, or ulong, C2 is the better conversion.

• If T1 is int and T2 is uint, or ulong, C1 is the better conversion.

• If T2 is int and T1 is uint, or ulong, C2 is the better conversion.

• If T1 is long and T2 is ulong, C1 is the better conversion.

• If T2 is long and T1 is ulong, C2 is the better conversion.

• Otherwise, neither conversion is better.

If an implicit conversion C1 is defined by these rules to be a better conversion than an implicit conversion C2,
then it is also the case that C2 is a worse conversion than C1.

7.4.3 Function member invocation
This section describes the process that takes place at run-time to invoke a particular function member. It is
assumed that a compile-time process has already determined the particular member to invoke, possibly by
applying overload resolution to a set of candidate function members.

For purposes of describing the invocation process, function members are divided into two categories:

• Static function members. These are static methods, constructors, static property accessors, and user -defined
operators. Static function members are always non-virtual.

• Instance function members. These are instance methods, instance property accessors, and indexer acces sors.
Instance function members are either non-virtual or virtual, and are always invoked on a particular instance.
The instance is computed by an instance expression, and it becomes accessible within the function member
as this (−7.5.7).

The run-time processing of a function member invocation consists of the following steps, where M is the
function member and, if M is an instance member, E is the instance expression:

• If M is a static function member:

o The argument list is evaluated as described in −7.4.1.

o M is invoked.

• If M is an instance function member declared in a value-type:

o E is evaluated. If this evaluation causes an exception, then no further steps are executed.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 117

o If E is not classified as a variable, then a temporary local variable of E§s type is created and the value of
E is assigned to that variable. E is then reclassified as a reference to that temporary local variable. The
temporary variable is accessible as this within M, but not in any other way. Thus, only when E is a true
variable is it possible for the caller to observe the changes that M makes to this.

o The argument list is evaluated as described in −7.4.1.

o M is invoked. The variable referenced by E becomes the variable referenced by this.

• If M is an instance function member declared in a reference-type:

o E is evaluated. If this evaluation causes an exception, then no further steps are executed.

o The argument list is evaluated as described in −7.4.1.

o If the type of E is a value-type, a boxing conversion (−4.3.1) is performed to convert E to type object,
and E is considered to be of type object in the following steps.

o The value of E is checked to be valid. If the value of E is null, a
System.NullReferenceException is thrown and no further steps are executed.

o The function member implementation to invoke is determined: If M is a non-virtual function member,
then M is the function member implementation to invoke. Otherwise, M is a virtual function member and
the function member implementation to invoke is determined through virtual function member lookup
(−7.4.4) or interface function member lookup (−7.4.5).

o The function member implementation determined in the step above is invoked. The object referenced by
E becomes the object referenced by this.

7.4.3.1 Invocations on boxed instances
A function member implemented in a value-type can be invoked through a boxed instance of that value-type in
the following situations:

• When the function member is an override of a method inherited from type object and is invoked
through an instance expression of type object.

• When the function member is an implementation of an interface function member and is invoked through an
instance expression of an interface-type.

• When the function member is invoked through a delegate.

In these situations, the boxed instance is considered to contain a variable of the value-type, and this variable
becomes the variable referenced by this within the function member invocation. This in particular means that
when a function member is invoked on a boxed instance, it is possible for the function member to modify the
value contained in the boxed instance.

7.4.4 Virtual function member lookup
Issue

We need to write this section.

7.4.5 Interface function member lookup
Issue

We need to write this section.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

118 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

7.5 Primary expressions
Primary expressions include the simplest forms of expressions.

primary-expression:
array-creation-expression
primary-expression-no-array-creation

primary-expression-no-array-creation:
literal
simple-name
parenthesized-expression
member-access
invocation-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
new-expression
typeof-expression
sizeof-expression
checked-expression
unchecked-expression

Primary expressions are divided between array-creation-expressions and primary-expression-no-array-
creations. Treating array-creation-expression in this way, rather than listing it along with the other simple
expression forms, enables the grammar to disallow potentially confusing code such as

object o = new int[3][1];

which would otherwise be interpreted as
object o = (new int[3])[1];

7.5.1 Literals
A primary-expression that consists of a literal (−2.4.4) is classified as a value.

7.5.2 Simple names
A simple-name consists of a single identifier.

simple-name:
identifier

A simple-name is evaluated and classified as follows:

• If the simple-name appears within a block and if the block contains a local variable or parameter with the
given name, then the simple-name refers to that local variable or parameter and is classified as a variable.

• Otherwise, for each type T, starting with the immediately enclosing class, struct, or enumeration declaration
and continuing with each enclosing outer class or struct declaration (if any), if a member lookup of the
simple-name in T produces a match:

o If T is the immediately enclosing class or struct type and the lookup identifies one or more methods, the
result is a method group with an associated instance expression of this.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 119

o If T is the immediately enclosing class or struct type, if the lookup identifies an instance member, and if
the reference occurs within the block of an instance method, an instance accessor, or an instance
constructor, the result is the same as a member access (−7.5.4) of the form this.E, where E is the
simple-name.

o Otherwise, the result is the same as a member access (−7.5.4) of the form T.E, where E is the simple-
name. In this case, it is an error for the simple-name to refer to an instance member.

• Otherwise, starting with the namespace in which the simple-name occurs, continuing with each enclosing
namespace (if any), and ending with the global namespace, the following steps are evaluated until an entity
is located:

o If the namespace contains a namespace member with the given name, then the simple-name refers to
that member and, depending on the member, is classified as a namespace or a type.

o Otherwise, if that namespace has a corresponding namespace declaration enclosing the location where
the simple-name occurs, then:

• If the namespace declaration contains a using-alias-directive that associates the given name with an
imported namespace or type, then the simple-name refers to that namespace or type.

• Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type with the given name, then the simple-name refers to that type.

• Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type with the given name, then the simple-name is ambiguous
and an error occurs.

• Otherwise, the name given by the simple-name is undefined and an error occurs.

7.5.2.1 Invariant meaning in blocks
For each occurrence of a given identifier as a simple-name in an expression, every other occurrence of the same
identifier as a simple-name in an expression within the immediately enclosing block (−8.2) or switch-block
(−8.7.2) must refer to the same entity. This rule ensures that the meaning of a name in the context of an
expression is always the same within a block.

The example
class Test
{
 double x;

 void F(bool b) {
 x = 1.0;
 if (b) {
 int x = 1;
 }
 }
}

is in error because x refers to different entities within the outer block (the extent of which includes the nested
block in the if statement). In contrast, the example

class Test
{
 double x;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

120 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 void F(bool b) {
 if (b) {
 x = 1.0;
 }
 else {
 int x = 1;
 }
 }
}

is permitted because the name x is never used in the outer block.

Note that the rule of invariant meaning applies only to simple names. It is perfectly valid for the same identifier
to have one meaning as a simple name and another meaning as right operand of a member access (−7.5.4). For
example:

struct Point
{
 int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

The example above illustrates a common pattern of using the names of fields as parameter names in an instance
constructor. In the example, the simple names x and y refer to the parameters, but that does not prevent the
member access expressions this.x and this.y from accessing the fields.

7.5.3 Parenthesized expressions
A parenthesized-expression consists of an expression enclosed in parentheses.

parenthesized-expression:
(expression)

A parenthesized-expression is evaluated by evaluating the expression within the parentheses. If the expression
within the parentheses denotes a namespace, type, or method group, an error occurs. Otherwise, the result of the
parenthesized-expression is the result of the evaluation of the contained expression.

7.5.4 Member access
A member-access consists of a primary-expression or a predefined-type, followed by a ” .„ token, followed by
an identifier.

member-access:
primary-expression . identifier
predefined-type . identifier

predefined-type: one of
bool byte char decimal double float int long

object sbyte short string uint ulong ushort

A member-access of the form E.I, where E is a primary-expression or a predefined-type and I is an identifier,
is evaluated and classified as follows:

• If E is a namespace and I is the name of an accessible member of that namespace, then the result is that
member and, depending on the member, is classified as a namespace or a type.

• If E is a predefined-type or a primary-expression classified as a type, and a member lookup (−7.3) of I in E
produces a match, then E.I is evaluated and classified as follows:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 121

o If I identifies a type, then the result is that type.

o If I identifies one or more methods, then the result is a method group with no associated instance
expression.

o If I identifies a static property, then the result is a property access with no associated instance
expression.

o If I identifies a static field:

• If the field is readonly and the reference occurs outside the static constructor of the class or struct
in which the field is declared, then the result is a value, namely the value of the static field I in E.

• Otherwise, the result is a variable, namely the static field I in E.

o If I identifies a static event:

• If the reference occurs within the class or struct in which the event is declared, and the event was
declared without event-accessor-declarations (−10.7), then E.I is processed exactly as if I was a
static field.

• Otherwise, the result is an event access with no associated instance expression.

o If I identifies a constant, then the result is a value, namely the value of that constant.

o If I identifies an enumeration member, then the result is a value, namely the value of that enumeration
member.

o Otherwise, E.I is an invalid member reference, and an error occurs.

• If E is a property access, indexer access, variable, or value, the type of which is T, and a member lookup
(−7.3) of I in T produces a match, then E.I is evaluated and classified as follows:

o First, if E is a property or indexer access, then the value of the property or indexer access is obtained
(−7.1.1) and E is reclassified as a value.

o If I identifies one or more methods, then the result is a method group with an associated instance
expression of E.

o If I identifies an instance property, then the result is a property access with an associated instance
expression of E.

o If T is a class-type and I identifies an instance field of that class-type:

• If the value of E is null, then a System.NullReferenceException is thrown.

• Otherwise, if the field is readonly and the reference occurs outside an instance constructor of the
class in which the field is declared, then the result is a value, namely the value of the field I in the
object referenced by E.

• Otherwise, the result is a variable, namely the field I in the object referenced by E.

o If T is a struct-type and I identifies an instance field of that struct-type:

• If E is a value, or if the field is readonly and the reference occurs outside an instance constructor
of the struct in which the field is declared, then the result is a value, namely the value of the field I
in the struct instance given by E.

• Otherwise, the result is a variable, namely the field I in the struct instance given by E.

o If I identifies an instance event:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

122 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• If the reference occurs within the class or struct in which the event is declared, and the event was
declared without event-accessor-declarations (−10.7), then E.I is processed exactly as if I was an
instance field.

• Otherwise, the result is an event access with an associated instance expression of E.

• Otherwise, E.I is an invalid member reference, and an error occurs.

7.5.4.1 Identical simple names and type names
In a member access of the form E.I, if E is a single identifier, and if the meaning of E as a simple-name (−7.5.2)
is a constant, field, property, local variable, or parameter with the same type as the meaning of E as a type-name
(−3.8), then both possible meanings of E are permitted. The two possible meanings of E.I are never ambiguous,
since I must necessarily be a member of the type E in both cases. In other words, the rule simply permits access
to the static members of E where an error would have otherwise occurred. For example:

struct Color
{
 public static readonly Color White = new Color(...);
 public static readonly Color Black = new Color(...);

 public Color Complement() {...}
}

class A
{
 public Color Color; // Field Color of type Color

 void F() {
 Color = Color.Black; // References Color.Black static member
 Color = Color.Complement(); // Invokes Complement() on Color field
 }

 static void G() {
 Color c = Color.White; // References Color.White static member
 }
}

Within the A class, those occurrences of the Color identifier that reference the Color type are underlined, and
those that reference the Color field are not underlined.

7.5.5 Invocation expressions
An invocation-expression is used to invoke a method.

invocation-expression:
primary-expression (argument-listopt)

The primary-expression of an invocation-expression must be a method group or a value of a delegate-type. If the
primary-expression is a method group, the invocation-expression is a method invocation (−7.5.5.1). If the
primary-expression is a value of a delegate-type, the invocation-expression is a delegate invocation (−7.5.5.2). If
the primary-expression is neither a method group nor a value of a delegate-type, an error occurs.

The optional argument-list (−7.4.1) provides values or variable references for the parameters of the method.

The result of evaluating an invocation-expression is classified as follows:

• If the invocation-expression invokes a method or delegate that returns void, the result is nothing. An
expression that is classified as nothing cannot be an operand of any operator, and is permitted only in the
context of a statement-expression (−8.6).

• Otherwise, the result is a value of the type returned by the method or delegate.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 123

7.5.5.1 Method invocations
For a method invocation, the primary-expression of the invocation-expression must be a method group. The
method group identifies the one method to invoke or the set of overloaded methods from which to choose a
specific method to invoke. In the latter case, determination of the specific method to invoke is based on the
context provided by the types of the arguments in the argument-list.

The compile-time processing of a method invocation of the form M(A), where M is a method group and A is an
optional argument-list, consists of the following steps:

• The set of candidate methods for the method invocation is constructed . Starting with the set of methods
associated with M, which were found by a previous member lookup (−7.3), the set is reduced to those
methods that are applicable with respect to the argument list A. The set reduction consists of applying the
following rules to each method T.N in the set, where T is the type in which the method N is declared:

o If N is not applicable with respect to A (−7.4.2.1), then N is removed from the set.

o If N is applicable with respect to A (−7.4.2.1), then all methods declared in a base type of T are removed
from the set.

• If the resulting set of candidate methods is empty, then no applicable methods exist, and an error occurs. If
the candidate methods are not all declared in the same type, the method invocation is ambiguous, and an
error occurs (this latter situation can only occur for an invocation of a method in an interface that has
multiple direct base interfaces, as described in −13.2.5).

• The best method of the set of candidate methods is identified using the overload resolution rules of −7.4.2. If
a single best method cannot be identified, the method invocation is ambiguous, and an error o ccurs.

• Given a best method, the invocation of the method is validated in the context of the method group: If the
best method is a static method, the method group must have resulted from a simple-name or a member-
access through a type. If the best method is an instance method, the method group must have resulted from a
simple-name, a member-access through a variable or value, or a base-access. If neither requirement is
satisfied, a compile-time error occurs.

Once a method has been selected and validated at compile-time by the above steps, the actual run-time
invocation is processed according to the rules of function member invocation described in −7.4.3.

The intuitive effect of the resolution rules described above is as follows: T o locate the particular method
invoked by a method invocation, start with the type indicated by the method invocation and proceed up the
inheritance chain until at least one applicable, accessible, non-override method declaration is found. Then
perform overload resolution on the set of applicable, accessible, non-override methods declared in that type and
invoke the method thus selected.

7.5.5.2 Delegate invocations
For a delegate invocation, the primary-expression of the invocation-expression must be a value of a delegate-
type. Furthermore, considering the delegate-type to be a function member with the same parameter list as the
delegate-type, the delegate-type must be applicable (−7.4.2.1) with respect to the argument-list of the
invocation-expression.

The run-time processing of a delegate invocation of the form D(A), where D is a primary-expression of a
delegate-type and A is an optional argument-list, consists of the following steps:

• D is evaluated. If this evaluation causes an exception, no further steps are executed.

• The value of D is checked to be valid. If the value of D is null, a System.NullReferenceException is
thrown and no further steps are executed.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

124 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• Otherwise, D is a reference to a delegate instance. A function member invocat ion (−7.4.3) is performed on
the method referenced by the delegate. If the method is an instance method, the instance of the invocation
becomes the instance referenced by the delegate.

7.5.6 Element access
An element-access consists of a primary-expression-no-array-creation, followed by a ” [” token, followed by an
expression-list, followed by a ”]„ token. The expression-list consists of one or more expressions, separated by
commas.

element-access:
primary-expression-no-array-creation [expression-list]

expression-list:
expression
expression-list , expression

If the primary-expression-no-array-creation of an element-access is a value of an array-type, the element-access
is an array access (−7.5.6.1). Otherwise, the primary-expression-no-array-creation must be a variable or value
of a class, struct, or interface type that has one or more indexer members, in which case the element-access is an
indexer access (−7.5.6.2).

7.5.6.1 Array access
For an array access, the primary-expression-no-array-creation of the element-access must be a value of an
array-type. The number of expressions in the expression-list must be the same as the rank of the array-type, and
each expression must be of type int, uint, long, ulong, or of a type that can be implicitly converted to one or
more of these types.

The result of evaluating an array access is a variable of the element type of the array, namely the array element
selected by the value(s) of the expression(s) in the expression-list.

The run-time processing of an array access of the form P[A], where P is a primary-expression-no-array-
creation of an array-type and A is an expression-list, consists of the following steps:

• P is evaluated. If this evaluation causes an exception, no further steps are executed.

• The index expressions of the expression-list are evaluated in order, from left to right. Following evaluation
of each index expression, an implicit conversion (−6.1) to one of the following types is performed: int,
uint, long, ulong. The first type in this list for which an implicit conversion exists is chosen. For
instance, if the index expression is of type short then an implicit conversion to int is performed, since
implicit conversions from short to int and from short to long are possible. If evaluation of an index
expression or the subsequent implicit conversion causes an exception, then no further index expressions are
evaluated and no further steps are executed.

• The value of P is checked to be valid. If the value of P is null, a System.NullReferenceException is
thrown and no further steps are executed.

• The value of each expression in the expression-list is checked against the actual bounds of each dimension
of the array instance referenced by P. If one or more values are out of range, a
System.IndexOutOfRangeException is thrown and no further steps are executed.

• The location of the array element given by the index expression(s) is computed, and this location becomes
the result of the array access.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 125

7.5.6.2 Indexer access
For an indexer access, the primary-expression-no-array-creation of the element-access must be a variable or
value of a class, struct, or interface type, and this type must implement one or more indexers that are applicable
with respect to the expression-list of the element-access.

The compile-time processing of an indexer access of the form P[A], where P is a primary-expression-no-array-
creation of a class, struct, or interface type T, and A is an expression-list, consists of the following steps:

• The set of indexers provided by T is constructed. The set consists of all indexers declared in T or a base type
of T that are not override declarations and are accessible in the current context (−3.5).

• The set is reduced to those indexers that are applicable and not hidden by other indexers. The following
rules are applied to each indexer S.I in the set, where S is the type in which the indexer I is declared:

o If I is not applicable with respect to A (−7.4.2.1), then I is removed from the set.

o If I is applicable with respect to A (−7.4.2.1), then all indexers declared in a base type of S are removed
from the set.

• If the resulting set of candidate indexers is empty, then no applicable indexers exist, and an error occurs. If
the candidate indexers are not all declared in the same type, the indexer access is ambiguous, and an error
occurs (this latter situation can only occur for an indexer access on an instance of an interface that has
multiple direct base interfaces).

• The best indexer of the set of candidate indexers is identified using the overload resolution rules of −7.4.2. If
a single best indexer cannot be identified, the indexer access is ambiguous, and an error occurs.

• The index expressions of the expression-list are evaluated in order, from left to right. The result of
processing the indexer access is an expression classified as an indexer access. The index er access expression
references the indexer determined in the step above, and has an associated instance expression of P and an
associated argument list of A.

Depending on the context in which it is used, an indexer access causes invocation of either the get-accessor or
the set-accessor of the indexer. If the indexer access is the target of an assignment, the set-accessor is invoked
to assign a new value (−7.13.1). In all other cases, the get-accessor is invoked to obtain the current value
(−7.1.1).

7.5.7 This access
A this-access consists of the reserved word this.

this-access:
this

A this-access is permitted only in the block of an instance method, an instance accessor, or an instance
constructor. It has one of the following meanings:

• When this is used in a primary-expression within an instance method or instance accessor of a class, it is
classified as a value. The type of the value is the class within which the usage occurs, and the value is a
reference to the object for which the method or accessor was invoked.

• When this is used in a primary-expression within an instance method or instance accessor of a struct, it is
classified as a variable. The type of the variable is the struct within which the usage occurs, and the variable
represents the struct for which the method or accessor was invoked. The this variable of an instance
method of a struct behaves exactly the same as a ref parameter of the struct type.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

126 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• When this is used in a primary-expression within an instance constructor of a class, it is classified as a
value. The type of the value is the class within which the usage occurs, and the value is a reference to the
object being constructed.

• When this is used in a primary-expression within an instance constructor of a struct, it is classified as a
variable. The type of the variable is the struct within which the usage occurs, and the variable represents the
struct being constructed. The this variable of an instance constructor of a struct behaves exactly the same
as an out parameter of the struct type’ this in particular means that the variable must be definitely assigned
in every execution path of the instance constructor.

Use of this in a primary-expression in a context other than the ones listed above is an error. In particular, it is
not possible to refer to this in a static method, a static property accessor, or in a variable-initializer of a field
declaration.

7.5.8 Base access
A base-access consists of the reserved word base followed by either a ” .„ token and an identifier or an
expression-list enclosed in square brackets:

base-access:
base . identifier
base [expression-list]

A base-access is used to access base class members that are hidden by similarly named members in the current
class or struct. A base-access is permitted only in the block of an instance method, an instance accessor, or an
instance constructor. When base.I occurs in a class or struct, I must denote a member of the base class of that
class or struct. Likewise, when base[E] occurs in a class, an applicable indexer must exist in the base class.

At compile-time, base-access expressions of the form base.I and base[E] are evaluated exactly as if they
were written ((B)this).I and ((B)this)[E], where B is the base class of the class or struct in which the
construct occurs. Thus, base.I and base[E] correspond to this.I and this[E], except this is viewed as
an instance of the base class.

When a base-access references a function member (−7.4), the function member is considered non-virtual for
purposes of function member invocation (−7.4.3). Thus, within an override of a virtual function member, a
base-access can be used to invoke the inherited implementation of the function member. If the function member
referenced by a base-access is abstract, an error occurs.

7.5.9 Postfix increment and decrement operators
post-increment-expression:

primary-expression ++

post-decrement-expression:
primary-expression --

The operand of a postfix increment or decrement operation must be an expression classified as a variable, a
property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a postfix increment or decrement operation is a property or indexer access, the property or
indexer must have both a get and a set accessor. If this is not the case, a compile-time error occurs.

Unary operator overload resolution (−7.2.3) is applied to select a specific operator implementation. Predefined
++ and -- operators exist for the following types: sbyte, byte, short, ushort, int, uint, long, ulong,
char, float, double, decimal, and any enum type. The predefined ++ operators return the value produced
by adding 1 to the operand, and the predefined -- operators return the value produced by subtracting 1 from the
operand.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 127

The run-time processing of a postfix increment or decrement operation of the form x++ or x-- consists of the
following steps:

• If x is classified as a variable:

o x is evaluated to produce the variable.

o The value of x is saved.

o The selected operator is invoked with the saved value of x as its argument.

o The value returned by the operator is stored in the location given by the evaluation of x.

o The saved value of x becomes the result of the operation.

• If x is classified as a property or indexer access:

o The instance expression (if x is not static) and the argument list (if x is an indexer access) associated
with x are evaluated, and the results are used in the subsequent get and set accessor invocations.

o The get accessor of x is invoked and the returned value is saved.

o The selected operator is invoked with the saved value of x as its argument.

o The set accessor of x is invoked with the value returned by the operator as its value argument.

o The saved value of x becomes the result of the operation.

The ++ and -- operators also support prefix notation, as described in −7.6.7. The result of x++ or x-- is the
value of x before the operation, whereas the result of ++x or --x is the value of x after the operation. In either
case, x itself has the same value after the operation.

An operator ++ or operator -- implementation can be invoked using either postfix or prefix notation. It is
not possible to have separate operator implementations for the two notations.

7.5.10 new operator
The new operator is used to create new instances of types.

new-expression:
object-creation-expression
 delegate-creation-expression

There are three forms of new expressions:

• Object creation expressions are used to create a new instances of class types and value types.

• Array creation expressions are used to create new instances of array types.

• Delegate creation expressions are used to create new instances of delegate types.

The new operator implies creation of an instance of a type, but does not necessarily imply dynamic allocation of
memory. In particular, instances of value types require no additional memory beyond the variables in which they
reside, and no dynamic allocations occur when new is used to create instances of value types.

7.5.10.1 Object creation expressions
An object-creation-expression is used to create a new instance of a class-type or a value-type.

object-creation-expression:
new type (argument-listopt)

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

128 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The type of an object-creation-expression must be a class-type or a value-type. The type cannot be an abstract
class-type.

The optional argument-list (−7.4.1) is permitted only if the type is a class-type or a struct-type.

The compile-time processing of an object-creation-expression of the form new T(A), where T is a class-type or
a value-type and A is an optional argument-list, consists of the following steps:

• If T is a value-type and A is not present:

o The object-creation-expression is a default constructor invocation. The result of the object-creation-
expression is a value of type T, namely the default value for T as defined in −4.1.1.

• Otherwise, if T is a class-type or a struct-type:

o If T is an abstract class-type, an error occurs.

o The instance constructor to invoke is determined using the overload resolution rules of −7.4.2. The set
of candidate instance constructors consists of all accessible instance constructors declared in T. If the set
is empty, or if a single best constructor cannot be identified, an error occurs.

o The result of the object-creation-expression is a value of type T, namely the value produced by invoking
the instance constructor determined in the step above.

• Otherwise, the object-creation-expression is invalid, and an error occurs.

The run-time processing of an object-creation-expression of the form new T(A), where T is class-type or a
struct-type and A is an optional argument-list, consists of the following steps:

• If T is a class-type:

o A new instance of class T is allocated. If there is not enough memory available to allocate the new
instance, a System.OutOfMemoryException is thrown and no further steps are executed.

o All fields of the new instance are initialized to their default values (−5.2).

o The instance constructor is invoked according to the rules of function member invocation (−7.4.3). A
reference to the newly allocated instance is automatically passed to the instance constructor and the
instance can be accessed from within the instance constructor as this.

• If T is a struct-type:

o An instance of type T is created by allocating a temporary local variable. Since an instance constructor
of a struct-type is required to definitely assign a value to each field of the instance being created, no
initialization of the temporary variable is necessary.

o The instance constructor is invoked according to the rules of function member invocation (−7.4.3). A
reference to the newly allocated instance is automatically passed to the instance constructor and the
instance can be accessed from within the instance constructor as this.

7.5.10.2 Array creation expressions
An array-creation-expression is used to create a new instance of an array-type.

array-creation-expression:
new non-array-type [expression-list] rank-specifiersopt array-initializeropt
new array-type array-initializer

An array creation expression of the first form allocates an array instance of the type that results from deleting
each of the individual expressions from the expression list. For example, the array creation expression new
int[10, 20] produces an array instance of type int[,], and the array creation expression new int[10][,]

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 129

produces an array of type int[][,]. Each expression in the expression list must be of type int, uint, long,
or ulong, or of a type that can be implicitly converted to one or more of these types. The value of each
expression determines the length of the corresponding dimension in the newly allocated array instance. Since the
length of an array dimension must be nonnegative, it is an error to specify a constant-expression that evaluates
to a negative value.

For single-dimensional arrays, array elements are stored in increasing index order, starting with index 0 and
ending with index Length “ 1. For multi-dimensional arrays, array elements are stored such that the indices of
the rightmost dimension are increased first, then the next left dimension, and s o on to the left.

If an array creation expression of the first form includes an array initializer, each expression in the expression
list must be a constant and the rank and dimension lengths specified by the expression list must match those of
the array initializer.

In an array creation expression of the second form, the rank of the specified array type must match that of the
array initializer. The individual dimension lengths are inferred from the number of elements in each of the
corresponding nesting levels of the array initializer. Thus, the expression

new int[,] {{0, 1}, {2, 3}, {4, 5}};

exactly corresponds to
new int[3, 2] {{0, 1}, {2, 3}, {4, 5}};

Array initializers are described further in −12.6.

The result of evaluating an array creation expression is classified as a value, namely a reference to the newly
allocated array instance. The run-time processing of an array creation expression consists of the following steps:

• The dimension length expressions of the expression-list are evaluated in order, from left to right. Following
evaluation of each expression, an implicit conversion (−6.1) to one of the following types is performed: int,
uint, long, ulong. The first type in this list for which an implicit conversion exists is chosen. If
evaluation of an expression or the subsequent implicit conversion causes an exception, then no further
expressions are evaluated and no further steps are executed.

• The computed values for the dimension lengths are validated as follows. If one or more of the values are
less than zero, a System.OverflowException is thrown and no further steps are executed.

• An array instance with the given dimension lengths is allocated. If there is not enough memory available to
allocate the new instance, a System.OutOfMemoryException is thrown and no further steps are
executed.

• All elements of the new array instance are initialized to their default values (−5.2).

• If the array creation expression contains an array initializer, then each expression in the array initializer is
evaluated and assigned to its corresponding array element. The evaluations and assignments are performed
in the order the expressions are written in the array initializer’ in other words, elements are initialized in
increasing index order, with the rightmost dimension increasing first. If evaluation of a given expression or
the subsequent assignment to the corresponding array element causes an exception, then no further elements
are initialized (and the remaining elements will thus have their default values).

An array creation expression permits instantiation of an array with elements of an array type, but the elements of
such an array must be manually initialized. For example, the statement

int[][] a = new int[100][];

creates a single-dimensional array with 100 elements of type int[]. The initial value of each element is null.
It is not possible for the same array creation expression to also instantiate the sub -arrays, and the statement

int[][] a = new int[100][5]; // Error

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

130 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

is an error. Instantiation of the sub-arrays must instead be performed manually, as in
int[][] a = new int[100][];
for (int i = 0; i < 100; i++) a[i] = new int[5];

When an array of arrays has a ” rectangular„ shape, that is when the sub-arrays are all of the same length, it is
more efficient to use a multi-dimensional array. In the example above, instantiation of the array of arrays creates
101 objects’ one outer array and 100 sub-arrays. In contrast,

int[,] = new int[100, 5];

creates only a single object, a two-dimensional array, and accomplishes the allocation in a single statement.

7.5.10.3 Delegate creation expressions
A delegate-creation-expression is used to create a new instance of a delegate-type.

delegate-creation-expression:
new delegate-type (expression)

The argument of a delegate creation expression must be a method group (7.1) or a value of a delegate-type. If
the argument is a method group, it identifies the method and, for an instance method, the object for which to
create a delegate. If the argument is a value of a delegate-type, it identifies a delegate instance of which to create
a copy.

The compile-time processing of a delegate-creation-expression of the form new D(E), where D is a delegate-
type and E is an expression, consists of the following steps:

• If E is a method group:

o The set of methods identified by E must include exactly one method that is compatible (−15.1) with D,
and this method becomes the one to which the newly created delegate refers. If no matching method
exists, or if more than one matching method exists, an error occurs. If the selected method is an instance
method, the instance expression associated with E determines the target object of the delegate.

o As in a method invocation, the selected method must be compatible with the context of the method
group: If the method is a static method, the method group must have resulted from a simple-name or a
member-access through a type. If the method is an instance method, the method group must have
resulted from a simple-name or a member-access through a variable or value. If the selected method
does not match the context of the method group, an error occurs.

o The result is a value of type D, namely a newly created delegate that refers to the selected method and
target object.

• Otherwise, if E is a value of a delegate-type:

o The delegate-type of E must be compatible (−15.1) with D, or otherwise an error occurs.

o The result is a value of type D, namely a newly created delegate that refers to the same invocation list as
E.

• Otherwise, the delegate creation expression is invalid, and an error occurs.

The run-time processing of a delegate-creation-expression of the form new D(E), where D is a delegate-type
and E is an expression, consists of the following steps:

• If E is a method group:

o If the method selected at compile-time is a static method, the target object of the delegate is null.
Otherwise, the selected method is an instance method, and the target object of the delegate is determined
from the instance expression associated with E:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 131

• The instance expression is evaluated. If this evaluation causes an exception, no further steps are
executed.

• If the instance expression is of a reference-type, the value computed by the instance expression
becomes the target object. If the target object is null, a System.NullReferenceException is
thrown and no further steps are executed.

• If the instance expression is of a value-type, a boxing operation (−4.3.1) is performed to convert the
value to an object, and this object becomes the target object.

o A new instance of the delegate type D is allocated. If there is not enough memory available to allocate
the new instance, a System.OutOfMemoryException is thrown and no further steps are executed.

o The new delegate instance is initialized with a reference to the method that was determined at compile -
time and a reference to the target object computed above.

• If E is a value of a delegate-type:

o E is evaluated. If this evaluation causes an exception, no further steps are executed.

o If the value of E is null, a System.NullReferenceException is thrown and no further steps are
executed.

o A new instance of the delegate type D is allocated. If there is not enough memory available to allocate
the new instance, a System.OutOfMemoryException is thrown and no further steps are executed.

o The new delegate instance is initialized with references to the same invocation list as the delegate
instance given by E.

The method and object to which a delegate refers are determined when the delegate is instantiated and then
remain constant for the entire lifetime of the delegate. In other words, it is not possible to change the target
method or object of a delegate once it has been created. (When two delegates are combined or one is removed
from another, a new delegate results; no existing delegate has its content changed.)

It is not possible to create a delegate that refers to a property, indexer, user -defined operator, instance
constructor, static constructor, or destructor.

As described above, when a delegate is created from a method group, the formal parameter list and return type
of the delegate determine which of the overloaded methods to select. In the example

delegate double DoubleFunc(double x);

class A
{
 DoubleFunc f = new DoubleFunc(Square);

 static float Square(float x) {
 return x * x;
 }

 static double Square(double x) {
 return x * x;
 }
}

the A.f field is initialized with a delegate that refers to the second Square method because that method exactly
matches the formal parameter list and return type of DoubleFunc. Had the second Square method not been
present, a compile-time error would have occurred.

7.5.11 The typeof operator
The typeof operator is used to obtain the System.Type object for a type.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

132 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

typeof-expression:
typeof (type)
typeof (void)

The first form of typeof-expression consists of a typeof keyword followed by a parenthesized type. The result
of an expression of this form is the System.Type object for the indicated type. There is only one
System.Type object for any given type.

The second form of typeof-expression consists of a typeof keyword followed by a parenthesized void
keyword. The result of this form is a System.Type object that represents the lack of a type. The type object
returned is distinct from the type object returned for any type. This special type object is useful in libraries that
allow reflection onto methods in the language, where those methods wish to have a way to represent the return
type of any method, including void methods, with an instance of System.Type.

The example
class Test
{
 static void Main() {
 Type[] t = {
 typeof(int),
 typeof(System.Int32),
 typeof(string),
 typeof(double[]),
 typeof(void)
 };
 for (int i = 0; i < t.Length; i++) {
 Console.WriteLine(t[i].Name);
 }
 }
}

produces the following output:
Int32
Int32
String
Double[]
Void

Note that int and System.Int32 are the same type.

7.5.12 The checked and unchecked operators
The checked and unchecked operators are used to control the overflow checking context for integral-type
arithmetic operations and conversions.

checked-expression:
checked (expression)

unchecked-expression:
unchecked (expression)

The checked operator evaluates the contained expression in a checked context, and the unchecked operator
evaluates the contained expression in an unchecked context. A checked-expression or unchecked-expression
corresponds exactly to a parenthesized-expression (−7.5.3), except that the contained expression is evaluated in
the given overflow checking context.

The overflow checking context can also be controlled through the checked and unchecked statements (−8.11).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 133

The following operations are affected by the overflow checking context established by the checked and
unchecked operators and statements:

• The predefined ++ and -- unary operators (−7.5.9 and −7.6.7), when the operand is of an integral type.

• The predefined - unary operator (−7.6.2), when the operand is of an integral type.

• The predefined +, -, *, and / binary operators (−7.7), when both operands are of integral types.

• Explicit numeric conversions (−6.2.1) from one integral type to another integral type.

When one of the above operations produce a result that is too large to represent in the destination type, the
context in which the operation is performed controls the resulting behavior:

• In a checked context, if the operation is a constant expression (−7.15), a compile-time error occurs.
Otherwise, when the operation is performed at run-time, a System.OverflowException is thrown.

• In an unchecked context, the result is truncated by discarding any high-order bits that do not fit in the
destination type.

For non-constant expressions (expressions that are evaluated at run-time) that are not enclosed by any checked
or unchecked operators or statements, the default overflow checking context is unchecked unless external
factors (such as compiler switches and execution environment configuration) call for checked evaluation.

For constant expressions (expressions that can be fully evaluated at compile-time), the default overflow
checking context is always checked. Unless a constant expression is explicitly placed in an unchecked
context, overflows that occur during the compile-time evaluation of the expression always cause compile-time
errors.

In the example
class Test
{
 static readonly int x = 1000000;
 static readonly int y = 1000000;

 static int F() {
 return checked(x * y); // Throws OverflowException
 }

 static int G() {
 return unchecked(x * y); // Returns -727379968
 }

 static int H() {
 return x * y; // Depends on default
 }
}

no compile-time errors are reported since neither of the expressions can be evaluated at compile -time. At run-
time, the F() method throws a System.OverflowException, and the G() method returns × 727379968 (the
lower 32 bits of the out-of-range result). The behavior of the H() method depends on the default overflow
checking context for the compilation, but it is either the same as F() or the same as G().

In the example
class Test
{
 const int x = 1000000;
 const int y = 1000000;

 static int F() {
 return checked(x * y); // Compile error, overflow
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

134 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 static int G() {
 return unchecked(x * y); // Returns -727379968
 }

 static int H() {
 return x * y; // Compile error, overflow
 }
}

the overflows that occur when evaluating the constant expressions in F() and H() cause compile-time errors to
be reported because the expressions are evaluated in a checked context. An overflow also occurs when
evaluating the constant expression in G(), but since the evaluation takes place in an unchecked context, the
overflow is not reported.

The checked and unchecked operators only affect the overflow checking context for those operations that are
textually contained within the ” („ and ”)„ tokens. The operators have no effect on function members that are
invoked as a result of evaluating the contained expression. In the example

class Test
{
 static int Multiply(int x, int y) {
 return x * y;
 }

 static int F() {
 return checked(Multiply(1000000, 1000000));
 }
}

the use of checked in F() does not affect the evaluation of x * y in Multiply(), and x * y is therefore
evaluated in the default overflow checking context.

The unchecked operator is convenient when writing constants of the signed integral types in hexadecimal
notation. For example:

class Test
{
 public const int AllBits = unchecked((int)0xFFFFFFFF);

 public const int HighBit = unchecked((int)0x80000000);
}

Both of the hexadecimal constants above are of type uint. Because the constants are outside the int range,
without the unchecked operator, the casts to int would produce compile-time errors.

7.6 Unary expressions
Issue

We need to write this section.

unary-expression:
primary-expression
+ unary-expression
- unary-expression
! unary-expression
~ unary-expression
* unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 135

7.6.1 Unary plus operator
For an operation of the form +x, unary operator overload resolution (−7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined unary plus operators are:

int operator +(int x);
uint operator +(uint x);
long operator +(long x);
ulong operator +(ulong x);
float operator +(float x);
double operator +(double x);
decimal operator +(decimal x);

For each of these operators, the result is simply the value of the operand.

7.6.2 Unary minus operator
For an operation of the form “x, unary operator overload resolution (−7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. The predefined negation operators are:

• Integer negation:
int operator “(int x);
long operator “(long x);

The result is computed by subtracting x from zero. In a checked context, if the value of x is the maximum
negative int or long, a System.OverflowException is thrown. In an unchecked context, if the value
of x is the maximum negative int or long, the result is that same value and the overflow is not reported.

If the operand of the negation operator is of type uint, it is converted to type long, and the type of the
result is long. An exception is the rule that permits the int value ‘2147483648 (‘231) to be written as a
decimal integer literal (−2.4.4.2).

If the operand of the negation operator is of type ulong, an error occurs. An exception is the rule that
permits the long value ‘9223372036854775808 (‘263) to be written as decimal integer literal (−2.4.4.2).

• Floating-point negation:
float operator “(float x);
double operator “(double x);

The result is the value of x with its sign inverted. If x is NaN, the result is also NaN.

• Decimal negation:
decimal operator “(decimal x);

The result is computed by subtracting x from zero.

7.6.3 Logical negation operator
For an operation of the form !x, unary operator overload resolution (−7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected operator, and the type
of the result is the return type of the operator. Only one predefined logical negation operator exists:

bool operator !(bool x);

This operator computes the logical negation of the operand: If the operand is true, the result is false. If the
operand is false, the result is true.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

136 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

7.6.4 Bitwise complement operator
For an operation of the form ~x, unary operator overload resolution (−7.2.3) is applied to select a specific
operator implementation. The operand is converted to the parameter type of the selected oper ator, and the type
of the result is the return type of the operator. The predefined bitwise complement operators are:

int operator ~(int x);
uint operator ~(uint x);
long operator ~(long x);
ulong operator ~(ulong x);

For each of these operators, the result of the operation is the bitwise complement of x.

Every enumeration type E implicitly provides the following bitwise complement operator:
E operator ~(E x);

The result of evaluating ~x, where x is an expression of an enumeration type E with an underlying type U, is
exactly the same as evaluating (E)(~(U)x).

7.6.5 Indirection operator

7.6.6 Address operator

7.6.7 Prefix increment and decrement operators
pre-increment-expression:

++ unary-expression

pre-decrement-expression:
-- unary-expression

The operand of a prefix increment or decrement operation must be an expression classified as a variable, a
property access, or an indexer access. The result of the operation is a value of the same type as the operand.

If the operand of a prefix increment or decrement operation is a property or indexer access, the property or
indexer must have both a get and a set accessor. If this is not the case, a compile-time error occurs.

Unary operator overload resolution (−7.2.3) is applied to select a specific operator implementation. Predefined
++ and -- operators exist for the following types: sbyte, byte, short, ushort, int, uint, long, ulong,
char, float, double, decimal, and any enum type. The predefined ++ operators return the value produced
by adding 1 to the operand, and the predefined -- operators return the value produced by subtracting 1 from the
operand.

The run-time processing of a prefix increment or decrement operation of the form ++x or --x consists of the
following steps:

• If x is classified as a variable:

o x is evaluated to produce the variable.

o The selected operator is invoked with the value of x as its argument.

o The value returned by the operator is stored in the location given by the evaluation of x.

o The value returned by the operator becomes the result of the operation.

• If x is classified as a property or indexer access:

o The instance expression (if x is not static) and the argument list (if x is an indexer access) associated
with x are evaluated, and the results are used in the subsequent get and set accessor invocations.

o The get accessor of x is invoked.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 137

o The selected operator is invoked with the value returned by the get accessor as its argument.

o The set accessor of x is invoked with the value returned by the operator as its value argument.

o The value returned by the operator becomes the result of the operation.

The ++ and -- operators also support postfix notation, as described in −7.5.9. The result of x++ or x-- is the
value of x before the operation, whereas the result of ++x or --x is the value of x after the operation. In either
case, x itself has the same value after the operation.

An operator ++ or operator -- implementation can be invoked using either postfix or prefix notation. It is
not possible to have separate operator implementations for the two notations.

7.6.8 Cast expressions
A cast-expression is used to explicitly convert an expression to a given type.

cast-expression:
(type) unary-expression

A cast-expression of the form (T)E, where T is a type and E is a unary-expression, performs an explicit
conversion (−6.2) of the value of E to type T. If no explicit conversion exists from the type of E to T, an error
occurs. Otherwise, the result is the value produced by the explicit conversion. The result is always classified as a
value, even if E denotes a variable.

The grammar for a cast-expression leads to certain syntactic ambiguities. For example, the expression (x)“y
could either be interpreted as a cast-expression (a cast of “y to type x) or as an additive-expression combined
with a parenthesized-expression (which computes the value x “ y).

To resolve cast-expression ambiguities, the following rule exists: A sequence of one or more tokens (−2.4)
enclosed in parentheses is considered the start of a cast-expression only if at least one of the following are true:

• The sequence of tokens is correct grammar for a type, but not for an expression.

• The sequence of tokens is correct grammar for a type, and the token immediately following the closing
parentheses is the token ” ~„ , the token ” !„ , the token ” („ , an identifier (−2.4.1), a literal (−2.4.4), or any
keyword (−2.4.3) except as and is.

The above rules mean that only if the construct is unambiguously a cast-expression is it considered a cast-
expression.

The term ” correct grammar„ above means only that the sequence of tokens must conform to the particular
grammatical production. It specifically does not consider the actual meaning of any constituent identifiers. For
example, if x and y are identifiers, then x.y is correct grammar for a type, even if x.y doesn§t actually denote a
type.

From the disambiguation rules it follows that, if x and y are identifiers, (x)y, (x)(y), and (x)(-y) are cast-
expressions, but (x)-y is not, even if x identifies a type. However, if x is a keyword that identifies a predefined
type (such as int), then all four forms are cast-expressions (because such a keyword could not possibly be an
expression by itself).

7.7 Arithmetic operators
The *, /, %, +, and “ operators are called the arithmetic operators.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

138 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression “ multiplicative-expression

7.7.1 Multiplication operator
For an operation of the form x * y, binary operator overload resolution (−7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined multiplication operators are listed below. The operators all compute the product of x and y.

• Integer multiplication:
int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);

In a checked context, if the product is outside the range of the result type, a
System.OverflowException is thrown. In an unchecked context, overflows are not reported and any
significant high-order bits of the result are discarded.

• Floating-point multiplication:
float operator *(float x, float y);
double operator *(double x, double y);

The product is computed according to the rules of IEEE 754 arithmetic. The following table lists the results
of all possible combinations of nonzero finite values, zeros, infinities, and NaN§s. In the table, x and y are
positive finite values. z is the result of x * y. If the result is too large for the destination type, z is infinity. If
the result is too small for the destination type, z is zero.

 +y “y +0 “0 +… “… NaN

+x +z “z +0 “0 +… “… NaN

“x “z +z “0 +0 “… +… NaN

+0 +0 “0 +0 “0 NaN NaN NaN

“0 “0 +0 “0 +0 NaN NaN NaN

+… +… “… NaN NaN +… “… NaN

“… “… +… NaN NaN “… +… NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• Decimal multiplication:

decimal operator *(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, a System.OverflowException is
thrown. If the result value is too small to represent in the decimal format, the result is zero.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 139

7.7.2 Division operator
For an operation of the form x / y, binary operator overload resolution (−7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the sele cted operator, and the
type of the result is the return type of the operator.

The predefined division operators are listed below. The operators all compute the quotient of x and y.

• Integer division:
int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown.

The division rounds the result towards zero, and the absolute value of the result is the largest possible
integer that is less than the absolute value of the quotient of the two operands. The result is zero or positive
when the two operands have the same sign and zero or negative when the two operands have opposite signs.

If the left operand is the maximum negative int or long and the right operand is “1, an overflow occurs. In
a checked context, this causes a System.OverflowException to be thrown. In an unchecked context,
the overflow is not reported and the result is instead the value of the left op erand.

• Floating-point division:
float operator /(float x, float y);
double operator /(double x, double y);

The quotient is computed according to the rules of IEEE 754 arithmetic. The following table lists the results
of all possible combinations of nonzero finite values, zeros, infinities, and NaN§s. In the table, x and y are
positive finite values. z is the result of x / y. If the result is too large for the destination type, z is infinity. If
the result is too small for the destination type, z is zero.

 +y “y +0 “0 +… “… NaN

+x +z “z +… “… +0 “0 NaN

“x “z +z “… +… “0 +0 NaN

+0 +0 “0 NaN NaN +0 “0 NaN

“0 “0 +0 NaN NaN “0 +0 NaN

+… +… “… +… “… NaN NaN NaN

“… “… +… “… +… NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• Decimal division:

decimal operator /(decimal x, decimal y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown. If the resulting
value is too large to represent in the decimal format, a System.OverflowException is thrown. If the
result value is too small to represent in the decimal format, the result is zero.

7.7.3 Remainder operator
For an operation of the form x % y, binary operator overload resolution (−7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

140 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The predefined remainder operators are listed below. The operators all compute the remainder of the division
between x and y.

• Integer remainder:
int operator %(int x, int y);
uint operator %(uint x, uint y);
long operator %(long x, long y);
ulong operator %(ulong x, ulong y);

The result of x % y is the value produced by x “ (x / y) * y. If y is zero, a
System.DivideByZeroException is thrown. The remainder operator never causes an overflow.

• Floating-point remainder:
float operator %(float x, float y);
double operator %(double x, double y);

The following table lists the results of all possible combinations of nonzero finite values, zeros, i nfinities,
and NaN§s. In the table, x and y are positive finite values. z is the result of x % y and is computed as x “ n *
y, where n is the largest possible integer that is less than or equal to x / y. This method of computing the
remainder is analogous to that used for integer operands, but differs from the IEEE 754 definition (in which
n is the integer closest to x / y).

 +y “y +0 “0 +… “… NaN

+x +z +z NaN NaN x x NaN

“x “z “z NaN NaN “x “x NaN

+0 +0 +0 NaN NaN +0 +0 NaN

“0 “0 “0 NaN NaN “0 “0 NaN

+… NaN NaN NaN NaN NaN NaN NaN

“… NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• Decimal remainder:

decimal operator %(decimal x, decimal y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown. If the resulting
value is too large to represent in the decimal format, a System.OverflowException is thrown. If the
result value is too small to represent in the decimal format, the result is zero.

7.7.4 Addition operator
For an operation of the form x + y, binary operator overload resolution (−7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined addition operators are listed below. For numeric and enumeration types, the predefined addition
operators compute the sum of the two operands. When one or both operands are of type string, the predefined
addition operators concatenate the string representation of the operands.

• Integer addition:
int operator +(int x, int y);
uint operator +(uint x, uint y);
long operator +(long x, long y);
ulong operator +(ulong x, ulong y);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 141

In a checked context, if the sum is outside the range of the result type, a System.OverflowException
is thrown. In an unchecked context, overflows are not reported and any significant high-order bits of the
result are discarded.

• Floating-point addition:
float operator +(float x, float y);
double operator +(double x, double y);

The sum is computed according to the rules of IEEE 754 arithmetic. The following table lists the results of
all possible combinations of nonzero finite values, zeros, infinities, and NaN§s. In the table, x and y are
nonzero finite values, and z is the result of x + y. If x and y have the same magnitude but opposite signs, z
is positive zero. If x + y is too large to represent in the destination type, z is an infinity with the same sign as
x + y. If x + y is too small to represent in the destination type, z is a zero with the same sign as x + y.

 y +0 “0 +… “… NaN

x z x x +… “… NaN

+0 y +0 +0 +… “… NaN

“0 y +0 “0 +… “… NaN

+… +… +… +… +… NaN NaN

“… “… “… “… NaN “… NaN

NaN NaN NaN NaN NaN NaN NaN

• Decimal addition:

decimal operator +(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, a System.OverflowException is
thrown. If the result value is too small to represent in the decimal format, the result is zero.

• Enumeration addition. Every enumeration type implicitly provides the following predefined operators,
where E is the enum type, and U is the underlying type of E:

E operator +(E x, U y);
E operator +(U x, E y);

The operators are evaluated exactly as (E)((U)x + (U)y).

• String concatenation:
string operator +(string x, string y);
string operator +(string x, object y);
string operator +(object x, string y);

The binary + operator performs string concatenation when one or both operands are of type string. If an
operand of string concatenation is null, an empty string is substituted. Otherwise, any non-string argument
is converted to its string representation by invoking the virtual ToString() method inherited from type
object. If ToString() returns null, an empty string is substituted.

The result of the string concatenation operator is a string that consists of th e characters of the left operand
followed by the characters of the right operand. The string concatenation operator never returns a null
value. A System.OutOfMemoryException may be thrown if there is not enough memory available to
allocate the resulting string.

• Delegate combination. Every delegate type implicitly provides the following predefined operator, where D is
the delegate type:

D operator +(D x, D y);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

142 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The binary + operator performs delegate combination when both operands are of some delegate type D. If
the first operand is null, the result of the operation is the value of the second operand (even if that operand
is also null). Otherwise, if the second operand is null, then the result of the operation is the value of the
first operand. Otherwise, the result of the operation is a new delegate instance that, when invoked, invokes
the first operand and then invokes the second operand.

7.7.5 Subtraction operator
For an operation of the form x “ y, binary operator overload resolution (−7.2.4) is applied to select a specific
operator implementation. The operands are converted to the parameter types of the selected operator, and the
type of the result is the return type of the operator.

The predefined subtraction operators are listed below. The operators all subtract y from x.

• Integer subtraction:
int operator “(int x, int y);
uint operator “(uint x, uint y);
long operator “(long x, long y);
ulong operator “(ulong x, ulong y);

In a checked context, if the difference is outside the range of the result type, a
System.OverflowException is thrown. In an unchecked context, overflows are not reported and any
significant high-order bits of the result are discarded.

• Floating-point subtraction:
float operator “(float x, float y);
double operator “(double x, double y);

The difference is computed according to the rules of IEEE 754 arithmetic. The following table lists the
results of all possible combinations of nonzero finite values, zeros, infinities, and NaN§s. In the table, x and
y are nonzero finite values, and z is the result of x “ y. If x and y are equal, z is positive zero. If x “ y is too
large to represent in the destination type, z is an infinity with the same sign as x “ y. If x “ y is too small to
represent in the destination type, z is a zero with the same sign as x “ y.

 y +0 “0 +… “… NaN

x z x x “… +… NaN

+0 “y +0 +0 “… +… NaN

“0 “y “0 +0 “… +… NaN

+… +… +… +… NaN +… NaN

“… “… “… “… “… NaN NaN

NaN NaN NaN NaN NaN NaN NaN

• Decimal subtraction:

decimal operator “(decimal x, decimal y);

If the resulting value is too large to represent in the decimal format, a System.OverflowException is
thrown. If the result value is too small to represent in the decimal format, the result is zero.

• Enumeration subtraction. Every enumeration type implicitly provides the following predefined ope rator,
where E is the enum type, and U is the underlying type of E:

U operator “(E x, E y);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 143

This operator is evaluated exactly as (U)((U)x “ (U)y). In other words, the operator computes the
difference between the ordinal values of x and y, and the type of the result is the underlying type of the
enumeration.

E operator “(E x, U y);

This operator is evaluated exactly as (E)((U)x “ y). In other words, the operator subtracts a value from
the underlying type of the enumeration, yielding a value of the enumeration.

• Delegate removal. Every delegate type implicitly provides the following predefined operator, where D is the
delegate type:

D operator “(D x, D y);

The binary - operator performs delegate removal when one or both operands are of a delegate type D. If the
first operand is null, the result of the operation is null. Otherwise, if the second operand is null, then the
result of the operation is the value of the first operand. Otherwise, both operands represent invocation lists
(−15.1) having one or more entries, and the result is a new invocation list consisting of the first operand §s
list with the second operand§s entries removed from it, provided the second operand§s list is a proper
contiguous subset of the first§s. (For determining subset equality, corresponding entries are compared as for
the delegate equality operator.) Otherwise, the result is the value of the left operand. Neither of the
operands§ lists is changed in the process. If the second operand§s list matches multiple subsets of contiguous
entries in the first operand§s list, the right-most matching subset of contiguous entries is removed. If
removal results in an empty list, the result is null.

The example
delegate void D(int x);

class Test
{
 public static void M1(int i) { /* */ }
 public static void M2(int i) { /* */ }
}

class Demo
{
 static void Main() {
 D cd1 = new D(Test.M1);
 D cd2 = new D(Test.M2);
 D cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd1; // => M1 + M2 + M2

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd1 + cd2; // => M2 + M1

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd2 + cd2; // => M1 + M1

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd2 + cd1; // => M1 + M2

 cd3 = cd1 + cd2 + cd2 + cd1; // M1 + M2 + M2 + M1
 cd3 -= cd1 + cd1; // => M1 + M2 + M2 + M1
 }
}shows a variety of delegate subtractions.

7.8 Shift operators
The << and >> operators are used to perform bit shifting operations.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

144 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

For an operation of the form x << count or x >> count, binary operator overload resolution (−7.2.4) is applied
to select a specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

When declaring an overloaded shift operator, the type of the first operand must always be the class or struct
containing the operator declaration, and the type of the second operand must always be int.

The predefined shift operators are listed below.

• Shift left:
int operator <<(int x, int count);
uint operator <<(uint x, int count);
long operator <<(long x, int count);
ulong operator <<(ulong x, int count);

The << operator shifts x left by a number of bits computed as described below.

The high-order bits of x are discarded, the remaining bits are shifted left, and the low-order empty bit
positions are set to zero.

• Shift right:
int operator >>(int x, int count);
uint operator >>(uint x, int count);
long operator >>(long x, int count);
ulong operator >>(ulong x, int count);

The >> operator shifts x right by a number of bits computed as described below.

When x is of type int or long, the low-order bits of x are discarded, the remaining bits are shifted right,
and the high-order empty bit positions are set to zero if x is non-negative and set to one if x is negative.

When x is of type uint or ulong, the low-order bits of x are discarded, the remaining bits are shifted right,
and the high-order empty bit positions are set to zero.

For the predefined operators, the number of bits to shift is computed as follows:

• When the type of x is int or uint, the shift count is given by the low-order five bits of count. In other
words, the shift count is computed from count & 0x1F.

• When the type of x is long or ulong, the shift count is given by the low-order six bits of count. In other
words, the shift count is computed from count & 0x3F.

If the resulting shift count is zero, the shift operators simply return the value of x.

Shift operations never cause overflows and produce the same results in checked and unchecked contexts.

When the left operand of the >> operator is of a signed integral type, the operator performs an arithmetic shift
right wherein the value of the most significant bit (the sign bit) of the operand is propagated to the high -order
empty bit positions. When the left operand of the >> operator is of an unsigned integral type, the operator
performs a logical shift right wherein high-order empty bit positions are always set to zero. To perform the
opposite operation of that inferred from the operand type, explicit casts can be used. For examp le, if x is a
variable of type int, the operation unchecked((int)((uint)x >> y)) performs a logical shift right of x.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 145

7.9 Relational and type testing operators
The ==, !=, <, >, <=, >=, is and as operators are called the relational and type testing operators.

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is type
relational-expression as type

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

The is operator is described in −7.9.9 and the as operator is described in −7.9.10.

The ==, !=, <, >, <= and >= operators are comparison operators. For an operation of the form x op y, where op
is a comparison operator, overload resolution (−7.2.4) is applied to select a specific operator implementation.
The operands are converted to the parameter types of the selected operator, and the type of the result is the
return type of the operator.

The predefined comparison operators are described in the following sections. All predefined comparison
operators return a result of type bool, as described in the following table.

Operation Result
x == y true if x is equal to y, false otherwise
x != y true if x is not equal to y, false otherwise
x < y true if x is less than y, false otherwise
x > y true if x is greater than y, false otherwise
x <= y true if x is less than or equal to y, false otherwise
x >= y true if x is greater than or equal to y, false otherwise

7.9.1 Integer comparison operators
The predefined integer comparison operators are:

bool operator ==(int x, int y);
bool operator ==(uint x, uint y);
bool operator ==(long x, long y);
bool operator ==(ulong x, ulong y);

bool operator !=(int x, int y);
bool operator !=(uint x, uint y);
bool operator !=(long x, long y);
bool operator !=(ulong x, ulong y);

bool operator <(int x, int y);
bool operator <(uint x, uint y);
bool operator <(long x, long y);
bool operator <(ulong x, ulong y);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

146 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

bool operator >(int x, int y);
bool operator >(uint x, uint y);
bool operator >(long x, long y);
bool operator >(ulong x, ulong y);

bool operator <=(int x, int y);
bool operator <=(uint x, uint y);
bool operator <=(long x, long y);
bool operator <=(ulong x, ulong y);

bool operator >=(int x, int y);
bool operator >=(uint x, uint y);
bool operator >=(long x, long y);
bool operator >=(ulong x, ulong y);

Each of these operators compares the numeric values of the two integer operands and returns a bool value that
indicates whether the particular relation is true or false.

7.9.2 Floating-point comparison operators
The predefined floating-point comparison operators are:

bool operator ==(float x, float y);
bool operator ==(double x, double y);

bool operator !=(float x, float y);
bool operator !=(double x, double y);

bool operator <(float x, float y);
bool operator <(double x, double y);

bool operator >(float x, float y);
bool operator >(double x, double y);

bool operator <=(float x, float y);
bool operator <=(double x, double y);

bool operator >=(float x, float y);
bool operator >=(double x, double y);

The operators compare the operands according to the rules of the IEEE 754 standard:

• If either operand is NaN, the result is false for all operators except !=, for which the result is true. For
any two operands, x != y always produces the same result as !(x == y). However, when one or both
operands are NaN, the <, >, <=, and >= operators do not produce the same results as the logical negation of
the opposite operator. For example, if either of x and y is NaN, then x < y is false, but !(x >= y) is true.

• When neither operand is NaN, the operators compare the values of the two floating-point operands with
respect to the ordering

“… < “max < ... < “min < “0.0 == +0.0 < +min < ... < +max < +…

where min and max are the smallest and largest positive finite values that can be represented in the given
floating-point format. Notable effects of this ordering are:

o Negative and positive zero are considered equal.

o A negative infinity is considered less than all other values, but equal to another negative infinity.

o A positive infinity is considered greater than all other values, but equal to another positive infinity.

7.9.3 Decimal comparison operators
The predefined decimal comparison operators are:

bool operator ==(decimal x, decimal y);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 147

bool operator !=(decimal x, decimal y);

bool operator <(decimal x, decimal y);

bool operator >(decimal x, decimal y);

bool operator <=(decimal x, decimal y);

bool operator >=(decimal x, decimal y);

Each of these operators compare the numeric values of the two decimal operands and return a bool value that
indicates whether the particular relation is true or false.

7.9.4 Boolean equality operators
The predefined boolean equality operators are:

bool operator ==(bool x, bool y);

bool operator !=(bool x, bool y);

The result of == is true if both x and y are true or if both x and y are false. Otherwise, the result is false.

The result of != is false if both x and y are true or if both x and y are false. Otherwise, the result is true.
When the operands are of type bool, the != operator produces the same result as the ^ operator.

7.9.5 Enumeration comparison operators
Every enumeration type implicitly provides the following predefined comparison operators:

bool operator ==(E x, E y);

bool operator !=(E x, E y);

bool operator <(E x, E y);

bool operator >(E x, E y);

bool operator <=(E x, E y);

bool operator >=(E x, E y);

The result of evaluating x op y, where x and y are expressions of an enumeration type E with an underlying type
U, and op is one of the comparison operators, is exactly the same as evaluating ((U)x) op ((U)y). In other
words, the enumeration type comparison operators simply compare the underlying integral values of the two
operands.

7.9.6 Reference type equality operators
The predefined reference type equality operators are:

bool operator ==(object x, object y);

bool operator !=(object x, object y);

The operators return the result of comparing the two references for equality or non -equality.

Since the predefined reference type equality operators accept operands of type object, they apply to all types
that do not declare applicable operator == and operator != members. Conversely, any applicable user-
defined equality operators effectively hide the predefined reference type equality operators.

The predefined reference type equality operators require the operands to be reference-type values or the value
null. Furthermore, they require that an implicit conversion exists from the type of e ither operand to the type of
the other operand. Unless both of these conditions are true, a compile-time error occurs. Notable implications of
these rules are:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

148 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• It is an error to use the predefined reference type equality operators to compare two references that are
known to be different at compile-time. For example, if the compile-time types of the operands are two class
types A and B, and if neither A nor B derives from the other, then it would be impossible for the two
operands to reference the same object. Thus, the operation is considered a compile-time error.

• The predefined reference type equality operators do not permit value type operands to be compared.
Therefore, unless a struct type declares its own equality operators, it is not possible to compare values of
that struct type.

• The predefined reference type equality operators never cause boxing operations to occur for their operands.
It would be meaningless to perform such boxing operations, since references to the newly allocated boxed
instances would necessarily differ from all other references.

For an operation of the form x == y or x != y, if any applicable operator == or operator != exists, the
operator overload resolution (−7.2.4) rules will select that operator instead of the predefined reference type
equality operator. However, it is always possible to select the predefined reference type equality operator by
explicitly casting one or both of the operands to type object. The example

class Test
{
 static void Main() {
 string s = "Test";
 string t = string.Copy(s);
 Console.WriteLine(s == t);
 Console.WriteLine((object)s == t);
 Console.WriteLine(s == (object)t);
 Console.WriteLine((object)s == (object)t);
 }
}

produces the output
True
False
False
False

The s and t variables refer to two distinct string instances containing the same characters. The first
comparison outputs True because the predefined string equality operator (−7.9.7) is selected when both
operands are of type string. The remaining comparisons all output False because the predefined reference
type equality operator is selected when one or both of the operands are of type object.

Note that the above technique is not meaningful for value types. The example
class Test
{
 static void Main() {
 int i = 123;
 int j = 123;
 Console.WriteLine((object)i == (object)j);
 }
}

outputs False because the casts create references to two separate instances of boxed int values.

7.9.7 String equality operators
The predefined string equality operators are:

bool operator ==(string x, string y);

bool operator !=(string x, string y);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 149

Two string values are considered equal when one of the following is true:

• Both values are null.

• Both values are non-null references to string instances that have identical lengths and identical characters in
each character position.

The string equality operators compare string values rather than string references. When two separate string
instances contain the exact same sequence of characters, the values of the strings are equal, but the references
are different. As described in −7.9.6, the reference type equality operators can be used to compare string
references instead of string values.

7.9.8 Delegate equality operators
Every delegate type implicitly provides the following predefined comparison operators:

bool operator ==(System.Delegate x, System.Delegate y);

bool operator !=(System.Delegate x, System.Delegate y);

Two delegate instances are considered equal as follows:

• If either of the delegate instances is null, they are equal if and only if both are null.

• If either of the delegate instances has an invocation list (−15.1) containing one entry, they are equal if and
only if the other also has an invocation list containing one entry, and either:

• both refer to the same static method, or

• both refer to the same non-static method on the same target object.

• If either of the delegate instances has an invocation list containing two or more entries, those instances are
equal if and only if their invocation lists are the same length, and each entry in one§s invocation list is equal
to the corresponding entry, in order, in the other§s invocation list.

Note that delegates of different types can be considered equal by the above def inition, as long as they have the
same return type and parameter types.

7.9.9 The is operator
The is operator is used to dynamically check if the run-time type of an object is compatible with a given type.
The result of the operation e is T, where e is an expression and T is a type, is a boolean value indicating
whether e can successfully be converted to type T by a reference conversion, a boxing conversion, or an
unboxing conversion. The operation is evaluated as follows:

• If the compile-time type of e is the same as T, or if an implicit reference conversion (−6.1.4) or boxing
conversion (−6.1.5) exists from the compile-time type of e to T:

o If e is of a reference type, the result of the operation is equivalent to evaluating e != null.

o If e is of a value type, the result of the operation is true.

• Otherwise, if an explicit reference conversion (−6.2.3) or unboxing conversion (−6.2.4) exists from the
compile-time type of e to T, a dynamic type check is performed:

o If the value of e is null, the result is false.

o Otherwise, let R be the run-time type of the instance referenced by e. If R and T are the same type, if R is
a reference type and an implicit reference conversion from R to T exists, or if R is a value type and T is
an interface type that is implemented by R, the result is true.

o Otherwise, the result is false.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

150 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• Otherwise, no reference or boxing conversion of e to type T is possible, and the result of the operation is
false.

Note that the is operator only considers reference conversions, boxing conversions, and unboxing conversions.
Other conversions, such as user defined conversions, are not considered by the is operator.

7.9.10 The as operator
The as operator is used to explicitly convert a value to a given reference type using a reference conversion or a
boxing conversion. Unlike a cast expression (−7.6.8), the as operator never throws an exception. Instead, if the
indicated conversion is not possible, the resulting value is null.

In an operation of the form e as T, e must be an expression and T must be a reference type. The type of the
result is T, and the result is always classified as a value. The operation is evaluated as foll ows:

• If the compile-time type of e is the same as T, the result is simply the value of e.

• Otherwise, if an implicit reference conversion (−6.1.4) or boxing conversion (−6.1.5) exists from the
compile-time type of e to T, this conversion is performed and becomes the result of the operation.

• Otherwise, if an explicit reference conversion (−6.2.3) exists from the compile-time type of e to T, a
dynamic type check is performed:

o If the value of e is null, the result is the value null with the compile-time type T.

o Otherwise, let R be the run-time type of the instance referenced by e. If R and T are the same type, if R is
a reference type and an implicit reference conversion from R to T exists, or if R is a value type and T is
an interface type that is implemented by R, the result is the reference given by e with the compile-time
type T.

o Otherwise, the result is the value null with the compile-time type T.

• Otherwise, the indicated conversion is never possible, and a compile-time error occurs.

Note that the as operator only performs reference conversions and boxing conversions. Other conversions, such
as user defined conversions, are not possible with the as operator and should instead be performed using cast
expressions.

7.10 Logical operators
The &, ^, and | operators are called the logical operators.

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

For an operation of the form x op y, where op is one of the logical operators, overload resolution (−7.2.4) is
applied to select a specific operator implementation. The operands are converted to the parameter types of the
selected operator, and the type of the result is the return type of the operator.

The predefined logical operators are described in the following sections.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 151

7.10.1 Integer logical operators
The predefined integer logical operators are:

int operator &(int x, int y);
uint operator &(uint x, uint y);
long operator &(long x, long y);
ulong operator &(ulong x, ulong y);

int operator |(int x, int y);
uint operator |(uint x, uint y);
long operator |(long x, long y);
ulong operator |(ulong x, ulong y);

int operator ^(int x, int y);
uint operator ^(uint x, uint y);
long operator ^(long x, long y);
ulong operator ^(ulong x, ulong y);

The & operator computes the bitwise logical AND of the two operands, the | operator computes the bitwise
logical OR of the two operands, and the ^ operator computes the bitwise logical exclusive OR of the two
operands. No overflows are possible from these operations.

7.10.2 Enumeration logical operators
Every enumeration type E implicitly provides the following predefined logical operators:

E operator &(E x, E y);
E operator |(E x, E y);
E operator ^(E x, E y);

The result of evaluating x op y, where x and y are expressions of an enumeration type E with an underlying type
U, and op is one of the logical operators, is exactly the same as evaluating (E)((U)x) op ((U)y). In other
words, the enumeration type logical operators simply perform the logical operation on the underlying type of the
two operands.

7.10.3 Boolean logical operators
The predefined boolean logical operators are:

bool operator &(bool x, bool y);

bool operator |(bool x, bool y);

bool operator ^(bool x, bool y);

The result of x & y is true if both x and y are true. Otherwise, the result is false.

The result of x | y is true if either x or y is true. Otherwise, the result is false.

The result of x ^ y is true if x is true and y is false, or x is false and y is true. Otherwise, the result is
false. When the operands are of type bool, the ^ operator computes the same result as the != operator.

7.11 Conditional logical operators
The && and || operators are called the conditional logical operators. They are also called the ” short-circuiting„
logical operators.

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

152 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

conditional-or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

The && and || operators are conditional versions of the & and | operators:

• The operation x && y corresponds to the operation x & y, except that y is evaluated only if x is true.

• The operation x || y corresponds to the operation x | y, except that y is evaluated only if x is false.

An operation of the form x && y or x || y is processed by applying overload resolution (−7.2.4) as if the
operation was written x & y or x | y. Then,

• If overload resolution fails to find a single best operator, or if overload resolution selects one of the
predefined integer logical operators, an error occurs.

• Otherwise, if the selected operator is one of the predefined boolean logical operators (−7.10.2), the operation
is processed as described in −7.11.1.

• Otherwise, the selected operator is a user-defined operator, and the operation is processed as described in
−7.11.2.

It is not possible to directly overload the conditional logical operators. However, because the conditional logic al
operators are evaluated in terms of the regular logical operators, overloads of the regular logical operators are,
with certain restrictions, also considered overloads of the conditional logical operators. This is described further
in −7.11.2.

7.11.1 Boolean conditional logical operators
When the operands of && or || are of type bool, or when the operands are of types that do not define an
applicable operator & or operator |, but do define implicit conversions to bool, the operation is processed
as follows:

• The operation x && y is evaluated as x? y: false. In other words, x is first evaluated and converted to type
bool. Then, if x is true, y is evaluated and converted to type bool, and this becomes the result of the
operation. Otherwise, the result of the operation is false.

• The operation x || y is evaluated as x? true: y. In other words, x is first evaluated and converted to type
bool. Then, if x is true, the result of the operation is true. Otherwise, y is evaluated and converted to
type bool, and this becomes the result of the operation.

7.11.2 User-defined conditional logical operators
When the operands of && or || are of types that declare an applicable user-defined operator & or operator
|, both of the following must be true, where T is the type in which the selected operator is declared:

• The return type and the type of each parameter of the selected operator must be T. In other words, the
operator must compute the logical AND or the logical OR of two operands of type T, and must return a result
of type T.

• T must contain declarations of operator true and operator false.

A compile-time error occurs if either of these requirements is not satisfied. Otherwise, the && or || operation is
evaluated by combining the user-defined operator true or operator false with the selected user-defined
operator:

• The operation x && y is evaluated as T.false(x)? x: T.&(x, y), where T.false(x) is an invocation of
the operator false declared in T, and T.&(x, y) is an invocation of the selected operator &. In other
words, x is first evaluated and operator false is invoked on the result to determine if x is definitely

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 153

false. Then, if x is definitely false, the result of the operation is the value previously computed for x.
Otherwise, y is evaluated, and the selected operator & is invoked on the value previously computed for x
and the value computed for y to produce the result of the operation.

• The operation x || y is evaluated as T.true(x)? x: T.|(x, y), where T.true(x) is an invocation of
the operator true declared in T, and T.|(x, y) is an invocation of the selected operator |. In other
words, x is first evaluated and operator true is invoked on the result to determine if x is definitely true.
Then, if x is definitely true, the result of the operation is the value previously computed for x. Otherwise, y
is evaluated, and the selected operator | is invoked on the value previously computed for x and the value
computed for y to produce the result of the operation.

In either of these operations, the expression given by x is only evaluated once, and the expression given by y is
either not evaluated or evaluated exactly once.

For an example of a type that implements operator true and operator false, see −11.4.2.

7.12 Conditional operator
The ?: operator is called the conditional operator. It is at times also called the ternary operator.

conditional-expression:
conditional-or-expression
conditional-or-expression ? expression : expression

A conditional expression of the form b? x: y first evaluates the condition b. Then, if b is true, x is evaluated
and becomes the result of the operation. Otherwise, y is evaluated and becomes the result of the operation. A
conditional expression never evaluates both x and y.

The conditional operator is right-associative, meaning that operations are grouped from right to left. For
example, an expression of the form a? b: c? d: e is evaluated as a? b: (c? d: e).

The first operand of the ?: operator must be an expression of a type that can be implicitly converted to bool, or
an expression of a type that implements operator true. If neither requirement is satisfied, a compile-time
error occurs.

The second and third operands of the ?: operator control the type of the conditional expression. Let X and Y be
the types of the second and third operands. Then,

• If X and Y are the same type, then this is the type of the conditional expression.

• Otherwise, if an implicit conversion (−6.1) exists from X to Y, but not from Y to X, then Y is the type of the
conditional expression.

• Otherwise, if an implicit conversion (−6.1) exists from Y to X, but not from X to Y, then X is the type of the
conditional expression.

• Otherwise, no expression type can be determined, and a compile-time error occurs.

The run-time processing of a conditional expression of the form b? x: y consists of the following steps:

• First, b is evaluated, and the bool value of b is determined:

o If an implicit conversion from the type of b to bool exists, then this implicit conversion is performed to
produce a bool value.

o Otherwise, the operator true defined by the type of b is invoked to produce a bool value.

• If the bool value produced by the step above is true, then x is evaluated and converted to the type of the
conditional expression, and this becomes the result of the conditional expression.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

154 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• Otherwise, y is evaluated and converted to the type of the conditional expression, and this becomes the
result of the conditional expression.

7.13 Assignment operators
The assignment operators assign a new value to a variable, a property, or an indexer element.

assignment:
unary-expression assignment-operator expression

assignment-operator: one of
= += -= *= /= %= &= |= ^= <<= >>=

The left operand of an assignment must be an expression classified as a variable, a property access, or an
indexer access.

The = operator is called the simple assignment operator. It assigns the value of the right operand to the variable,
property, or indexer element given by the left operand. The simple assignment operator is described in −7.13.1.

The operators formed by prefixing a binary operator with an = character are called the compound assignment
operators. These operators perform the indicated operation on the two operands, and then assign the resulting
value to the variable, property, or indexer element given by the left operand. The compound assignment
operators are described in −7.13.2.

The assignment operators are right-associative, meaning that operations are grouped from right to left. For
example, an expression of the form a = b = c is evaluated as a = (b = c).

7.13.1 Simple assignment
The = operator is called the simple assignment operator. In a simple assignment, the right operand must be an
expression of a type that is implicitly convertible to the type of the left operand. The operation assigns the value
of the right operand to the variable, property, or indexer element given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand. The result has the same
type as the left operand and is always classified as a value.

If the left operand is a property or indexer access, the property or indexer must have a set accessor. If this is not
the case, a compile-time error occurs.

The run-time processing of a simple assignment of the form x = y consists of the following steps:

• If x is classified as a variable:

o x is evaluated to produce the variable.

o y is evaluated and, if required, converted to the type of x through an implicit conversion (−6.1).

o If the variable given by x is an array element of a reference-type, a run-time check is performed to
ensure that the value computed for y is compatible with the array instance of which x is an element. The
check succeeds if y is null, or if an implicit reference conversion (−6.1.4) exists from the actual type of
the instance referenced by y to the actual element type of the array instance containing x. Otherwise, a
System.ArrayTypeMismatchException is thrown.

o The value resulting from the evaluation and conversion of y is stored into the location given by the
evaluation of x.

• If x is classified as a property or indexer access:

o The instance expression (if x is not static) and the argument list (if x is an indexer access) associated
with x are evaluated, and the results are used in the subsequent set accessor invocation.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 155

o y is evaluated and, if required, converted to the type of x through an implicit conversion (−6.1).

o The set accessor of x is invoked with the value computed for y as its value argument.

The array co-variance rules (−12.5) permit a value of an array type A[] to be a reference to an instance of an
array type B[], provided an implicit reference conversion exists from B to A. Because of these rules, assignment
to an array element of a reference-type requires a run-time check to ensure that the value being assigned is
compatible with the array instance. In the example

string[] sa = new string[10];
object[] oa = sa;

oa[0] = null; // Ok
oa[1] = "Hello"; // Ok
oa[2] = new ArrayList(); // ArrayTypeMismatchException

the last assignment causes a System.ArrayTypeMismatchException to be thrown because an instance of
ArrayList cannot be stored in an element of a string[].

When a property or indexer declared in a struct-type is the target of an assignment, the instance expression
associated with the property or indexer access must be classified as a variable. If the instance expression is
classified as a value, a compile-time error occurs. Because of −7.5.4, the same rule also applies to fields.

Given the declarations:
struct Point
{
 int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public int X {
 get { return x; }
 set { x = value; }
 }

 public int Y {
 get { return y; }
 set { y = value; }
 }
}

struct Rectangle
{
 Point a, b;

 public Rectangle(Point a, Point b) {
 this.a = a;
 this.b = b;
 }

 public Point A {
 get { return a; }
 set { a = value; }
 }

 public Point B {
 get { return b; }
 set { b = value; }
 }
}

in the example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

156 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

Point p = new Point();
p.X = 100;
p.Y = 100;
Rectangle r = new Rectangle();
r.A = new Point(10, 10);
r.B = p;

the assignments to p.X, p.Y, r.A, and r.B are permitted because p and r are variables. However, in the
example

Rectangle r = new Rectangle();
r.A.X = 10;
r.A.Y = 10;
r.B.X = 100;
r.B.Y = 100;

the assignments are all invalid, since r.A and r.B are not variables.

7.13.2 Compound assignment
An operation of the form x op= y is processed by applying binary operator overload resolution (−7.2.4) as if the
operation was written x op y. Then,

• If the return type of the selected operator is implicitly convertible to the type of x, the operation is evaluated
as x = x op y, except that x is evaluated only once.

• Otherwise, if the selected operator is a predefined operator, if the return type of the selected operator is
explicitly convertible to the type of x, and if y is implicitly convertible to the type of x, then the operation is
evaluated as x = (T)(x op y), where T is the type of x, except that x is evaluated only once.

• Otherwise, the compound assignment is invalid, and a compile-time error occurs.

The term ” evaluated only once„ means that in the evaluation of x op y, the results of any constituent expressions
of x are temporarily saved and then reused when performing the assignment to x. For example, in the
assignment A()[B()] += C(), where A is a method returning int[], and B and C are methods returning int,
the methods are invoked only once, in the order A, B, C.

When the left operand of a compound assignment is a property access or indexer access, the property or indexer
must have both a get accessor and a set accessor. If this is not the case, a compile-time error occurs.

The second rule above permits x op= y to be evaluated as x = (T)(x op y) in certain contexts. The rule exists
such that the predefined operators can be used as compound operators when the left operand is of type sbyte,
byte, short, ushort, or char. Even when both arguments are of one of those types, the predefined operators
produce a result of type int, as described in −7.2.6.2. Thus, without a cast it would not be possible to assign the
result to the left operand.

The intuitive effect of the rule for predefined operators is simply that x op= y is permitted if both of x op y and
x = y are permitted. In the example

byte b = 0;
char ch = '\0';
int i = 0;

b += 1; // Ok
b += 1000; // Error, b = 1000 not permitted
b += i; // Error, b = i not permitted
b += (byte)i; // Ok

ch += 1; // Error, ch = 1 not permitted
ch += (char)1; // Ok

the intuitive reason for each error is that a corresponding simple assignment would also have been an error.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 7 Expressions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 157

7.13.3 Event assignment
Issue

We need to write this section.

7.14 Expression
An expression is either a conditional-expression or an assignment.

expression:
conditional-expression
assignment

7.15 Constant expressions
A constant-expression is an expression that can be fully evaluated at compile-time.

constant-expression:
expression

The type of a constant expression can be one of the following: sbyte, byte, short, ushort, int, uint,
long, ulong, char, float, double, decimal, bool, string, any enumeration type, or the null type. The
following constructs are permitted in constant expressions:

• Literals (including the null literal).

• References to const members of class and struct types.

• References to members of enumeration types.

• Parenthesized sub-expressions.

• Cast expressions, provided the target type is one of the types listed above.

• The predefined +, “, !, and ~ unary operators.

• The predefined +, “, *, /, %, <<, >>, &, |, ^, &&, ||, ==, !=, <, >, <=, and => binary operators, provided
each operand is of a type listed above.

• The ?: conditional operator.

Whenever an expression is of one of the types listed above and contains only the constructs listed above, the
expression is evaluated at compile-time. This is true even if the expression is a sub-expression of a larger
expression that contains non-constant constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time evaluation of non-constant
expressions, except that where run-time evaluation would have thrown an exception, compile-time evaluation
causes a compile-time error to occur.

Unless a constant expression is explicitly placed in an unchecked context, overflows that occur in integral-type
arithmetic operations and conversions during the compile-time evaluation of the expression always cause
compile-time errors (−7.5.12).

Constant expressions occur in the contexts listed below. In these contexts, an error occurs if an expression
cannot be fully evaluated at compile-time.

• Constant declarations (−10.3).

• Enumeration member declarations (−14.3).

• case labels of a switch statement (−8.7.2).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

158 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• goto case statements (−8.9.3).

• Dimension lengths in an array creation expression (−7.5.10.2) that includes an initializer.

• Attributes (−17).

An implicit constant expression conversion (−6.1.6) permits a constant expression of type int to be converted
to sbyte, byte, short, ushort, uint, or ulong, provided the value of the constant expression is within the
range of the destination type.

7.16 Boolean expressions
A boolean-expression is an expression that yields a result of type bool.

boolean-expression:
expression

The controlling conditional expression of an if-statement (−8.7.1), while-statement (−8.8.1), do-statement
(−8.8.2), or for-statement (−8.8.3) is a boolean-expression. The controlling conditional expression of the ?:
operator (−7.12) follows the same rules as a boolean-expression, but for reasons of operator precedence is
classified as a conditional-or-expression.

A boolean-expression is required to be of a type that can be implicitly converted to bool or of a type that
implements operator true. If neither requirement is satisfied, a compile-time error occurs.

When a boolean expression is of a type that cannot be implicitly converted to bool but does implement
operator true, then following evaluation of the expression, the operator true implementation provided by
that type is invoked to produce a bool value.

The DBBool struct type in −11.4.2 provides an example of a type that implements operator true and
operator false.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 159

8. Statements

C# provides a variety of statements. Most of these statements will be famili ar to developers who have
programmed in C and C++.

statement:
labeled-statement
declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
lock-statement
using-statement

The embedded-statement nonterminal is used for statements that appear within other statements. The use of
embedded-statement rather than statement excludes the use of declaration statements and labeled statements in
these contexts. For example, the code

void F(bool b) {
 if (b)
 int i = 44;
}

is in error because an if statement requires an embedded-statement rather than a statement for its if branch. If
this code were permitted, then the variable i would be declared, but it could never be used.

8.1 End points and reachability
Every statement has an end point. In intuitive terms, the end point of a statement is the location that
immediately follows the statement. The execution rules for composite statements (statements that contain
embedded statements) specify the action that is taken when control reaches the end point of an embedded
statement. For example, when control reaches the end point of a statement in a block, control is transferred to
the next statement in the block.

If a statement can possibly be reached by execution, the statement is said to be reachable. Conversely, if there is
no possibility that a statement will be executed, the statement is said to be unreachable.

In the example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

160 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

void F() {
 Console.WriteLine("reachable");
 goto Label;
 Console.WriteLine("unreachable");
 Label:
 Console.WriteLine("reachable");
}

the second invocation of Console.WriteLine is unreachable because there is no possibility that the statement
will be executed.

A warning is reported if the compiler determines that a statement is unreachable. It is specifically not an error
for a statement to be unreachable.

To determine whether a particular statement or end point is reachable, the compiler performs flow analysis
according to the reachability rules defined for each statement. The flow analysis takes into account the values of
constant expressions (−7.15) that control the behavior of statements, but the possible values of non-constant
expressions are not considered. In other words, for purposes of control flow analysis, a non-constant expression
of a given type is considered to have any possible value of that type.

In the example
void F() {
 const int i = 1;
 if (i == 2) Console.WriteLine("unreachable");
}

the boolean expression of the if statement is a constant expression because both operands of the == operator are
constants. The constant expression is evaluated at compile-time, producing the value false, and the
Console.WriteLine invocation is therefore considered unreachable. However, if i is changed to be a local
variable

void F() {
 int i = 1;
 if (i == 2) Console.WriteLine("reachable");
}

the Console.WriteLine invocation is considered reachable, even though it will in reality never be executed.

The block of a function member is always considered reachable. By successively evaluating the reachability
rules of each statement in a block, the reachability of any given statement can be determined.

In the example
void F(int x) {
 Console.WriteLine("start");
 if (x < 0) Console.WriteLine("negative");
}

the reachability of the second Console.WriteLine is determined as follows:

• First, because the block of the F method is reachable, the first Console.WriteLine statement is reachable.

• Next, because the first Console.WriteLine statement is reachable, its end point is reachable.

• Next, because the end point of the first Console.WriteLine statement is reachable, the if statement is
reachable.

• Finally, because the boolean expression of the if statement does not have the constant value false, the
second Console.WriteLine statement is reachable.

There are two situations in which it is an error for the end point of a statement to be reachable:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 161

• Because the switch statement does not permit a switch section to ” fall through„ to the next switch section,
it is an error for the end point of the statement list of a switch section to be reachable. If this error occurs, it
is typically an indication that a break statement is missing.

• It is an error for the end point of the block of a function member that computes a value to be reachable. If
this error occurs, it is typically an indication that a return statement is missing.

8.2 Blocks
A block permits multiple statements to be written in contexts where a single statement is allowed.

block:
{ statement-listopt }

A block consists of an optional statement-list (−8.2.1), enclosed in braces. If the statement list is omitted, the
block is said to be empty.

A block may contain declaration statements (−8.5). The scope of a local variable or constant declared in a block
extends from the declaration to the end of the block.

Within a block, the meaning of a name used in an expression context must always be the same (−7.5.2.1).

A block is executed as follows:

• If the block is empty, control is transferred to the end point of the block.

• If the block is not empty, control is transferred to the statement list. When and if control reaches the end
point of the statement list, control is transferred to the end point of the block.

The statement list of a block is reachable if the block itself is reachable.

The end point of a block is reachable if the block is empty or if the end point of the statement lis t is reachable.

8.2.1 Statement lists
A statement list consists of one or more statements written in sequence. Statement lists occur in blocks (−8.2)
and in switch-blocks (−8.7.2).

statement-list:
statement
statement-list statement

A statement list is executed by transferring control to the first statement. When and if control reaches the end
point of a statement, control is transferred to the next statement. When and if control reaches the end point of the
last statement, control is transferred to the end point of the statement list.

A statement in a statement list is reachable if at least one of the following is true:

• The statement is the first statement and the statement list itself is reachable.

• The end point of the preceding statement is reachable.

• The statement is a labeled statement and the label is referenced by a reachable goto statement.

The end point of a statement list is reachable if the end point of the last statement in the list is reachable .

8.3 The empty statement
An empty-statement does nothing.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

162 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

empty-statement:
;

An empty statement is used when there are no operations to perform in a context where a statement is required.

Execution of an empty statement simply transfers control to the end point of the statement. Thus, the end point
of an empty statement is reachable if the empty statement is reachable.

An empty statement can be used when writing a while statement with a null body:
bool ProcessMessage() {...}

void ProcessMessages() {
 while (ProcessMessage())
 ;
}

Also, an empty statement can be used to declare a label just before the closing ” }„ of a block:
void F() {
 ...

if (done) goto exit;
 ...

exit: ;
}

8.4 Labeled statements
A labeled-statement permits a statement to be prefixed by a label. Labeled statements are permitted in blocks,
but are not permitted as embedded statements.

labeled-statement:
identifier : statement

A labeled statement declares a label with the name given by the identifier. The scope of a label is the block in
which the label is declared, including any nested blocks. It is an error for two labels with the same name to have
overlapping scopes.

A label can be referenced from goto statements (−8.9.3) within the scope of the label. This means that goto
statements can transfer control within blocks and out of blocks, but never into blocks.

Labels have their own declaration space and do not interfere with other identifiers. The example
int F(int x) {
 if (x >= 0) goto x;
 x = -x;
 x: return x;
}

is valid and uses the name x as both a parameter and a label.

Execution of a labeled statement corresponds exactly to execution of the statement following the label.

In addition to the reachability provided by normal flow of control, a labeled statement is reachable if the label is
referenced by a reachable goto statement.

8.5 Declaration statements
A declaration-statement declares a local variable or constant. Declaration statements are permitted in blocks, but
are not permitted as embedded statements.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 163

declaration-statement:
local-variable-declaration ;
local-constant-declaration ;

8.5.1 Local variable declarations
A local-variable-declaration declares one or more local variables.

local-variable-declaration:
type variable-declarators

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializer

The type of a local-variable-declaration specifies the type of the variables introduced by the declaration. The
type is followed by a list of variable-declarators, each of which introduces a new variable. A variable-
declarator consists of an identifier that names the variable, optionally followed by an ” =„ token and a variable-
initializer that gives the initial value of the variable.

The value of a local variable is obtained in an expression using a simple-name (−7.5.2), and the value of a local
variable is modified using an assignment (−7.13). A local variable must be definitely assigned (−5.3) at each
location where its value is obtained.

The scope of a local variable starts immediately after its identifier in the declaration and extends to th e end of
the block containing the declaration. Within the scope of a local variable, it is an error to declare another local
variable or constant with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple de clarations of single
variables with the same type. Furthermore, a variable initializer in a local variable declaration corresponds
exactly to an assignment statement that is inserted immediately after the declaration.

The example
void F() {
 int x = 1, y, z = x * 2;
}

corresponds exactly to
void F() {
 int x; x = 1;
 int y;
 int z; z = x * 2;
}

8.5.2 Local constant declarations
A local-constant-declaration declares one or more local constants.

local-constant-declaration:
const type constant-declarators

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

164 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

The type of a local-constant-declaration specifies the type of the constants introduced by the declaration. The
type is followed by a list of constant-declarators, each of which introduces a new constant. A constant-
declarator consists of an identifier that names the constant, followed by an ” =„ token, followed by a constant-
expression (−7.15) that gives the value of the constant.

The type and constant-expression of a local constant declaration must follow the same rules as those of a
constant member declaration (−10.3).

The value of a local constant is obtained in an expression using a simple-name (−7.5.2).

The scope of a local constant extends from its declaration to the end of the block containing the declaration. The
scope of a local constant does not include the constant-expression that provides its value. Within the scope of a
local constant, it is an error to declare another local variable or constant with the same name.

A local constant declaration that declares multiple constants is equivalent to multiple declarations of single
constants with the same type.

8.6 Expression statements
An expression-statement evaluates a given expression. The value computed by the expression, if any, is
discarded.

expression-statement:
statement-expression ;

statement-expression:
invocation-expression
object-creation-expression
assignment
post-increment-expression
post-decrement-expression
pre-increment-expression
pre-decrement-expression

Not all expressions are permitted as statement-expressions. In particular, expressions such as x + y and x == 1
that merely compute a value (which will be discarded), are not permitted as statement-expressions.

Issue

Define "side effect".

Execution of an expression-statement evaluates the contained statement-expression and then transfers control to
the end point of the expression-statement.

8.7 Selection statements
Selection statements select one of a number of possible statements for execution based on the value of an
expression.

selection-statement:
if-statement
switch-statement

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 165

8.7.1 The if statement
The if statement selects a statement for execution based on the value of a boolean expression.

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

boolean-expression:
expression

An else part is associated with the lexically nearest preceding if statement that is allowed by the syntax. Thus,
an if statement of the form

if (x) if (y) F(); else G();

is equivalent to
if (x) {
 if (y) {
 F();
 }
 else {
 G();
 }
}

An if statement is executed as follows:

• The boolean-expression (−7.16) is evaluated.

• If the boolean expression yields true, control is transferred to the first embedded statement. When and if
control reaches the end point of that statement, control is t ransferred to the end point of the if statement.

• If the boolean expression yields false and if an else part is present, control is transferred to the second
embedded statement. When and if control reaches the end point of that statement, control is transfe rred to
the end point of the if statement.

• If the boolean expression yields false and if an else part is not present, control is transferred to the end
point of the if statement.

The first embedded statement of an if statement is reachable if the if statement is reachable and the boolean
expression does not have the constant value false.

The second embedded statement of an if statement, if present, is reachable if the if statement is reachable and
the boolean expression does not have the constant value true.

The end point of an if statement is reachable if the end point of at least one of its embedded statements is
reachable. In addition, the end point of an if statement with no else part is reachable if the if statement is
reachable and the boolean expression does not have the constant value true.

8.7.2 The switch statement
The switch statement selects for execution a statement list having an associated switch label that corresponds to
the value of the switch expression.

switch-statement:
switch (expression) switch-block

switch-block:
{ switch-sectionsopt }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

166 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

switch-sections:
switch-section
switch-sections switch-section

switch-section:
switch-labels statement-list

switch-labels:
switch-label
switch-labels switch-label

switch-label:
case constant-expression :
default :

A switch-statement consists of the keyword switch, followed by a parenthesized expression (called the switch
expression), followed by a switch-block. The switch-block consists of zero or more switch-sections, enclosed in
braces. Each switch-section consists of one or more switch-labels followed by a statement-list (−8.2.1).

The governing type of a switch statement is established by the switch expression. If the type of the switch
expression is sbyte, byte, short, ushort, int, uint, long, ulong, char, string, or an enum-type, then
that is the governing type of the switch statement. Otherwise, exactly one user-defined implicit conversion
(−6.4) must exist from the type of the switch expression to one of the following possible governing types:
sbyte, byte, short, ushort, int, uint, long, ulong, char, string. If no such implicit conversion exists,
or if more that one such implicit conversion exists, a compile-time error occurs.

The constant expression of each case label must denote a value of a type that is implicitly convertible (−6.1) to
the governing type of the switch statement. A compile-time error occurs if two or more case labels in the
same switch statement specify the same constant value.

There can be at most one default label in a switch statement.

A switch statement is executed as follows:

• The switch expression is evaluated and converted to the governing type.

• If one of the constants specified in a case label in the same switch statement is equal to the value of the
switch expression, control is transferred to the statement list following the matched case label.

• If none of the constants specified in case labels in the same switch statement, is equal to the value of the
switch expression, and if a default label is present, control is transferred to the statement list following the
default label.

• If none of the constants specified in case labels in the same switch statement, is equal to the value of the
switch expression, and if no default label is present, control is transferred to the end point of the switch
statement.

If the end point of the statement list of a switch section is reachable, a compile -time error occurs. This is known
as the ” no fall through„ rule. The example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 167

switch (i) {
case 0:
 CaseZero();
 break;
case 1:
 CaseOne();
 break;
default:
 CaseOthers();
 break;
}

is valid because no switch section has a reachable end point. Unlike C and C++, execution of a switch section is
not permitted to ” fall through„ to the next switch section, and the example

switch (i) {
case 0:
 CaseZero();
case 1:
 CaseZeroOrOne();
default:
 CaseAny();
}

is in error. When execution of a switch section is to be followed by execution of another switch sectio n, an
explicit goto case or goto default statement must be used:

switch (i) {
case 0:
 CaseZero();
 goto case 1;
case 1:
 CaseZeroOrOne();
 goto default;
default:
 CaseAny();
 break;
}

Multiple labels are permitted in a switch-section. The example
switch (i) {
case 0:
 CaseZero();
 break;
case 1:
 CaseOne();
 break;
case 2:
default:
 CaseTwo();
 break;
}

is legal. The example does not violate the ” no fall through„ rule because the labels case 2: and default: are
part of the same switch-section.

The ” no fall through„ rule prevents a common class of bugs that occur in C and C++ when break statements
are accidentally omitted. Also, because of this rule, the switch sections of a switch statement can be arbitrarily
rearranged without affecting the behavior of the statement. For example, the sections of the switch statement
above can be reversed without affecting the behavior of the statement:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

168 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

switch (i) {
default:
 CaseAny();
 break;
case 1:
 CaseZeroOrOne();
 goto default;
case 0:
 CaseZero();
 goto case 1;
}

The statement list of a switch section typically ends in a break, goto case, or goto default statement, but
any construct that renders the end point of the statement list unreachable is permitted. For example, a while
statement controlled by the boolean expression true is known to never reach its end point. Likewise, a throw
or return statement always transfers control elsewhere and never reaches its end point. Thus, the following
example is valid:

switch (i) {
case 0:
 while (true) F();
case 1:
 throw new ArgumentException();
case 2:
 return;
}

The governing type of a switch statement may be the type string. For example:
void DoCommand(string command) {
 switch (command.ToLower()) {
 case "run":
 DoRun();
 break;
 case "save":
 DoSave();
 break;
 case "quit":
 DoQuit();
 break;
 default:
 InvalidCommand(command);
 break;
 }
}

Like the string equality operators (−7.9.7), the switch statement is case sensitive and will execute a given
switch section only if the switch expression string exactly matches a case label constant.

When the governing type of a switch statement is string, the value null is permitted as a case label
constant.

A switch-block may contain declaration statements (−8.5). The scope of a local variable or constant declared in a
switch block extends from the declaration to the end of the switch block.

Within a switch block, the meaning of a name used in an expression context must always be the same (−7.5.2.1).

The statement list of a given switch section is reachable if the switch statement is reachable and at least one of
the following is true:

• The switch expression is a non-constant value.

• The switch expression is a constant value that matches a case label in the switch section.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 169

• The switch expression is a constant value that doesn§t match any case label, and the switch section contains
the default label.

• A switch label of the switch section is referenced by a reachable goto case or goto default statement.

The end point of a switch statement is reachable if at least one of the following is true:

• The switch statement contains a reachable break statement that exits the switch statement.

• The switch statement is reachable, the switch expression is a non-constant value, and no default label is
present.

• The switch statement is reachable, the switch expression is a constant value that doesn§t match any case
label, and no default label is present.

8.8 Iteration statements
Iteration statements repeatedly execute an embedded statement.

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

8.8.1 The while statement
The while statement conditionally executes an embedded statement zero or more times.

while-statement:
while (boolean-expression) embedded-statement

A while statement is executed as follows:

• The boolean-expression (−7.16) is evaluated.

• If the boolean expression yields true, control is transferred to the embedded statement. When and if control
reaches the end point of the embedded statement (possibly from execution of a continue statement),
control is transferred to the beginning of the while statement.

• If the boolean expression yields false, control is transferred to the end point of the while statement.

Within the embedded statement of a while statement, a break statement (−8.9.1) may be used to transfer
control to the end point of the while statement (thus ending iteration of the embedded statement), and a
continue statement (−8.9.2) may be used to transfer control to the end point of the embedded statement (thus
performing another iteration of the while statement).

The embedded statement of a while statement is reachable if the while statement is reachable and the boolean
expression does not have the constant value false.

The end point of a while statement is reachable if at least one of the following is true:

• The while statement contains a reachable break statement that exits the while statement.

• The while statement is reachable and the boolean expression does not have the constant value true.

8.8.2 The do statement
The do statement conditionally executes an embedded statement one or more times.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

170 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

do-statement:
do embedded-statement while (boolean-expression) ;

A do statement is executed as follows:

• Control is transferred to the embedded statement.

• When and if control reaches the end point of the embedded statement (possibly from execution of a
continue statement), the boolean-expression (−7.16) is evaluated. If the boolean expression yields true,
control is transferred to the beginning of the do statement. Otherwise, control is transferred to the end point
of the do statement.

Within the embedded statement of a do statement, a break statement (−8.9.1) may be used to transfer control to
the end point of the do statement (thus ending iteration of the embedded statement), and a continue statement
(−8.9.2) may be used to transfer control to the end point of the embedded statement (thus performing another
iteration of the do statement).

The embedded statement of a do statement is reachable if the do statement is reachable.

The end point of a do statement is reachable if at least one of the following is true:

• The do statement contains a reachable break statement that exits the do statement.

• The end point of the embedded statement is reachable and the boolean expression does not have the constant
value true.

8.8.3 The for statement
The for statement evaluates a sequence of initialization expressions and then, while a condition is true,
repeatedly executes an embedded statement and evaluates a sequence of iteration expressions.

for-statement:
for (for-initializeropt ; for-conditionopt ; for-iteratoropt) embedded-statement

for-initializer:
local-variable-declaration
statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

statement-expression-list:
statement-expression
statement-expression-list , statement-expression

The for-initializer, if present, consists of either a local-variable-declaration (−8.5.1) or a list of statement-
expressions (−8.6) separated by commas. The scope of a local variable declared by a for-initializer starts at the
variable-declarator for the variable and extends to the end of the embedded statement. The scope includes the
for-condition and the for-iterator.

The for-condition, if present, must be a boolean-expression (−7.16).

The for-iterator, if present, consists of a list of statement-expressions (−8.6) separated by commas.

A for statement is executed as follows:

• If a for-initializer is present, the variable initializers or statement expressions are executed in the order they
are written. This step is only performed once.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 171

• If a for-condition is present, it is evaluated.

• If the for-condition is not present or if the evaluation yields true, control is transferred to the embedded
statement. When and if control reaches the end point of the embedded statement (possibly from execution of
a continue statement), the expressions of the for-iterator, if any, are evaluated in sequence, and then
another iteration is performed, starting with evaluation of the for-condition in the step above.

• If the for-condition is present and the evaluation yields false, control is transferred to the end point of the
for statement.

Within the embedded statement of a for statement, a break statement (−8.9.1) may be used to transfer control
to the end point of the for statement (thus ending iteration of the embedded statement), and a continue
statement (−8.9.2) may be used to transfer control to the end point of the embedded statement (thus executing
another iteration of the for statement).

The embedded statement of a for statement is reachable if one of the following is true:

• The for statement is reachable and no for-condition is present.

• The for statement is reachable and a for-condition is present and does not have the constant value false.

The end point of a for statement is reachable if at least one of the following is true:

• The for statement contains a reachable break statement that exits the for statement.

• The for statement is reachable and a for-condition is present and does not have the constant value true.

8.8.4 The foreach statement
The foreach statement enumerates the elements of a collection, executing an embedded statement for each
element of the collection.

foreach-statement:
foreach (type identifier in expression) embedded-statement

The type and identifier of a foreach statement declare the iteration variable of the statement. The iteration
variable corresponds to a read-only local variable with a scope that extends over the embedded statement.
During execution of a foreach statement, the iteration variable represents the collection element for which an
iteration is currently being performed. A compile-time error occurs if the embedded statement attempts to assign
to the iteration variable or pass the iteration variable as a ref or out parameter.

The type of the expression of a foreach statement must be a collection type (as defined below), and an explicit
conversion (−6.2) must exist from the element type of the collection to the type of the iteration variable.

A type C is said to be a collection type if it implements the System.IEnumerable interface or implements the
collection pattern by meeting all of the following criteria:

• C contains a public instance method with the signature GetEnumerator() that returns a struct-type,
class-type, or interface-type, which is called E in the following text.

• E contains a public instance method with the signature MoveNext() and the return type bool.

• E contains a public instance property named Current that permits reading the current value. The type of
this property is said to be the element type of the collection type.

The System.Array type (−12.1.1) is a collection type, and since all array types derive from System.Array,
any array type expression is permitted in a foreach statement. The order in which foreach traverses the
elements of an array is defined in −7.5.10.2.

A foreach statement is executed as follows:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

172 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• The collection expression is evaluated to produce an instance of the collection type. This instance is referred
to as c in the following. If c is of a reference-type and has the value null, a
System.NullReferenceException is thrown.

• If the collection type C implements the collection pattern defined above and E implements the
System.IDisposable interface then:

o An enumerator instance is obtained by evaluating the method invocation c.GetEnumerator(). The
returned enumerator is stored in a temporary local variable, in the following referred to as enumerator.
It is not possible for the embedded statement to access this temporary variable. If enumerator is of a
reference-type and has the value null, a System.NullReferenceException is thrown.

o A try-statement (−8.10) consisting of a try block followed by a finally block is executed:

• The try block consists of the following steps:

o The enumerator is advanced to the next element by evaluating the method invocation
enumerator.MoveNext().

o If the value returned by enumerator.MoveNext() is true, the following steps are
performed:

• The current enumerator value is obtained by evaluating the property access
enumerator.Current, and the value is converted to the type of the iteration variable by
an explicit conversion (−6.2). The resulting value is stored in the iteration variable such that
it can be accessed in the embedded statement.

• Control is transferred to the embedded statement. When and if control reaches the end point
of the embedded statement (possibly from execution of a continue statement), another
foreach iteration is performed, starting with the step above that advances the enumerator.

o If the value returned by e.MoveNext() is false, control is transferred to the end point of the
foreach statement.

• The finally block disposes the enumerator by converting enumerator to
System.IDisposable and calling the Dispose method. Because E implements
Sytsem.IDisposable, the conversion is guaranteed to succeed.

• Otherwise, if the collection type C implements the collection pattern defined above and E does not
implement the System.IDisposable interface then:

o An enumerator instance is obtained by evaluating the method invocation c.GetEnumerator(). The
returned enumerator is stored in a temporary local variable, in the following referred to as enumerator.
It is not possible for the embedded statement to access this temporary variable. If enumerator is of a
reference-type and has the value null, a System.NullReferenceException is thrown.

o The enumerator is advanced to the next element by evaluating the method invocation
enumerator.MoveNext().

o If the value returned by enumerator.MoveNext() is true, the following steps are performed:

• The current enumerator value is obtained by evaluating the property access
enumerator.Current, and the value is converted to the type of the iteration variable by an
explicit conversion (−6.2). The resulting value is stored in the iteration variable such that it can be
accessed in the embedded statement.

• Control is transferred to the embedded statement. When and if control reaches the end point of the
embedded statement (possibly from execution of a continue statement), another foreach
iteration is performed, starting with the step above that advances the enumerator.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 173

o If the value returned by e.MoveNext() is false, control is transferred to the end point of the
foreach statement.

• Otherwise, C implements System.IEnumerable, and statement execution proceeds as follows:

o An enumerable instance is obtained by casting c to the System.IEnumerable interface. The returned
instance is stored in a temporary local variable, in the following referred to as enumerable. It is not
possible for the embedded statement to access this temporary variable.

o An enumerator instance is obtained by evaluating the method invocation
enumerable.GetEnumerator(). The returned enumerator is stored in a temporary local variable, in
the following referred to as enumerator. It is not possible for the embedded statement to access this
temporary variable. If enumerator has the value null, a System.NullReferenceException is
thrown.

o A try-statement (−8.10) consisting of a try block followed by a finally block is executed:

• The try block consists of the following steps:

o The enumerator is advanced to the next element by evaluating the method invocation
enumerator.MoveNext().

o If the value returned by enumerator.MoveNext() is true, the following steps are
performed:

• The current enumerator value is obtained by evaluating the property access
enumerator.Current, and the value is converted to the type of the iteration variable by
an explicit conversion (−6.2). The resulting value is stored in the iteration variable such that
it can be accessed in the embedded statement.

• Control is transferred to the embedded statement. When and if control reaches the end point
of the embedded statement (possibly from execution of a continue statement), another
foreach iteration is performed, starting with the step above that advances the enumerator.

o If the value returned by enumerator.MoveNext() is false, control is transferred to the end
point of the foreach statement.

• The finally block consists of the following steps:

o Evaluate the expression (enumerator as System.IDisposable) and store the result in a
temporary local variable, in the following referred to as disposable.

o If disposable is non-null then call its Dispose method.

The embedded statement of a foreach statement is reachable if the foreach statement is reachable. Likewise,
the end point of a foreach statement is reachable if the foreach statement is reachable.

The following example prints out each value in a two-dimensional array, in element order:
class Test
{
 static void Main() {
 double[,] values = { {1.2, 3.4, 4.5, 6.7},
 {5.6, 9.8, 5.4, 3.8} };

 foreach (double elementValue in values)
 Console.Write("{0} ", elementValue);

 Console.WriteLine();
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

174 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The output is:
1.2 3.4 4.5 6.7 5.6 9.8 5.4 3.8

8.9 Jump statements
Jump statements unconditionally transfer control.

jump-statement:
break-statement
continue-statement
goto-statement
return-statement
throw-statement

The location to which a jump statement transfers control is called the target of the jump statement.

When a jump statement occurs within a block, and when the target of the jump statement is outside that block,
the jump statement is said to exit the block. While a jump statement may transfer control out of a block, it can
never transfer control into a block.

Execution of jump statements is complicated by the presence of intervening try statements. In the absence of
such try statements, a jump statement unconditionally transfers control from the jump statement to its target. In
the presence of such intervening try statements, execution is more complex. If the jump statement exits one or
more try blocks with associated finally blocks, control is initially transferred to the finally block of the
innermost try statement. When and if control reaches the end point of a finally block, control is transferred
to the finally block of the next enclosing try statement. This process is repeated until the finally blocks of
all intervening try statements have been executed.

In the example
static void F() {
 while (true) {
 try {
 try {
 Console.WriteLine("Before break");
 break;
 }
 finally {
 Console.WriteLine("Innermost finally block");
 }
 }
 finally {
 Console.WriteLine("Outermost finally block");
 }
 }
 Console.WriteLine("After break");
}

the finally blocks associated with two try statements are executed before control is transferred to the target of the
jump statement.

8.9.1 The break statement
The break statement exits the nearest enclosing switch, while, do, for, or foreach statement.

break-statement:
break ;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 175

The target of a break statement is the end point of the nearest enclosing switch, while, do, for, or foreach
statement. If a break statement is not enclosed by a switch, while, do, for, or foreach statement, a
compile-time error occurs.

When multiple switch, while, do, for, or foreach statements are nested within each other, a break
statement applies only to the innermost statement. To transfer control across multiple nesting levels, a goto
statement (−8.9.3) must be used.

A break statement cannot exit a finally block (−8.10). When a break statement occurs within a finally
block, the target of the break statement must be within the same finally block. Otherwise, a compile-time
error occurs.

A break statement is executed as follows:

• If the break statement exits one or more try blocks with associated finally blocks, control is initially
transferred to the finally block of the innermost try statement. When and if control reaches the end point
of a finally block, control is transferred to the finally block of the next enclosing try statement. This
process is repeated until the finally blocks of all intervening try statements have been executed.

• Control is transferred to the target of the break statement.

Because a break statement unconditionally transfers control elsewhere, the end point of a break statement is
never reachable.

8.9.2 The continue statement
The continue statement starts a new iteration of the nearest enclosing while, do, for, or foreach statement.

continue-statement:
continue ;

The target of a continue statement is the end point of the embedded statement of the nearest enclosing while,
do, for, or foreach statement. If a continue statement is not enclosed by a while, do, for, or foreach
statement, a compile-time error occurs.

When multiple while, do, for, or foreach statements are nested within each other, a continue statement
applies only to the innermost statement. To transfer control across multiple nesting levels, a goto statement
(−8.9.3) must be used.

A continue statement cannot exit a finally block (−8.10). When a continue statement occurs within a
finally block, the target of the continue statement must be within the same finally block. Otherwise a
compile-time error occurs.

A continue statement is executed as follows:

• If the continue statement exits one or more try blocks with associated finally blocks, control is
initially transferred to the finally block of the innermost try statement. When and if control reaches the
end point of a finally block, control is transferred to the finally block of the next enclosing try
statement. This process is repeated until the finally blocks of all intervening try statements have been
executed.

• Control is transferred to the target of the continue statement.

Because a continue statement unconditionally transfers control elsewhere, the end point of a continue
statement is never reachable.

8.9.3 The goto statement
The goto statement transfers control to a statement that is marked by a label.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

176 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

goto-statement:
goto identifier ;
goto case constant-expression ;
goto default ;

The target of a goto identifier statement is the labeled statement with the given label. If a label with the given
name does not exist in the current function member, or if the goto statement is not within the scope of the label,
a compile-time error occurs. This rule permits the use of a goto statement to transfer control out of a nested
scope, but not into a nested scope. In the example

class Test
{
 static void Main(string[] args) {
 string[,] table = { {"red", "blue", "green"},
 {"Monday", "Wednesday", "Friday"} };

 foreach (string str in args) {
 int row, colm;
 for (row = 0; row <= 1; ++row) {
 for (colm = 0; colm <= 2; ++colm) {
 if (str == table[row,colm]) {
 goto done;
 }
 }
 }

 Console.WriteLine("{0} not found", str);
 continue;
 done:
 Console.WriteLine("Found {0} at [{1}][{2}]", str, row, colm);
 }

 }

}a goto statement is used to transfer control out of a nested scope.

The target of a goto case statement is the statement list in the immediately enclosing switch statement
(−8.7.2) which contains a case label with the given constant value. If the goto case statement is not enclosed
by a switch statement, if the constant-expression is not implicitly convertible (−6.1) to the governing type of
the nearest enclosing switch statement, or if the nearest enclosing switch statement does not contain a case
label with the given constant value, a compile-time error occurs.

The target of a goto default statement is the statement list in the immediately enclosing switch statement
(−8.7.2) which contains a default label. If the goto default statement is not enclosed by a switch statement,
or if the nearest enclosing switch statement does not contain a default label, a compile-time error occurs.

A goto statement cannot exit a finally block (−8.10). When a goto statement occurs within a finally
block, the target of the goto statement must be within the same finally block, or otherwise a compile-time
error occurs.

A goto statement is executed as follows:

• If the goto statement exits one or more try blocks with associated finally blocks, control is initially
transferred to the finally block of the innermost try statement. When and if control reaches the end point
of a finally block, control is transferred to the finally block of the next enclosing try statement. This
process is repeated until the finally blocks of all intervening try statements have been executed.

• Control is transferred to the target of the goto statement.

Because a goto statement unconditionally transfers control elsewhere, the end point of a goto statement is
never reachable.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 177

8.9.4 The return statement
The return statement returns control to the caller of the function member in which the return statement
appears.

return-statement:
return expressionopt ;

A return statement with no expression can be used only in a function member that does not compute a value,
that is, a method with the return type void, the set accessor of a property or indexer, the add and remove
accessors of an event, an instance constructor, a static constructor, or a destructor.

A return statement with an expression can be used only in a function member that computes a value, that is, a
method with a non-void return type, the get accessor of a property or indexer, or a user-defined operator. An
implicit conversion (−6.1) must exist from the type of the expression to the return type of the contain ing
function member.

It is an error for a return statement to appear in a finally block (−8.10).

A return statement is executed as follows:

• If the return statement specifies an expression, the expression is evaluated and the re sulting value is
converted to the return type of the containing function member by an implicit conversion. The result of the
conversion becomes the value returned to the caller.

• If the return statement is enclosed by one or more try blocks with associated finally blocks, control is
initially transferred to the finally block of the innermost try statement. When and if control reaches the
end point of a finally block, control is transferred to the finally block of the next enclosing try
statement. This process is repeated until the finally blocks of all enclosing try statements have been
executed.

• Control is returned to the caller of the containing function member.

Because a return statement unconditionally transfers control elsewhere, the end point of a return statement
is never reachable.

8.9.5 The throw statement
The throw statement throws an exception.

throw-statement:
throw expressionopt ;

A throw statement with an expression throws the value produced by evaluating the expression. The expression
must denote a value of the class type System.Exception or of a class type that derives from
System.Exception. If evaluation of the expression produces null, a System.NullReferenceException
is thrown instead.

A throw statement with no expression can be used only in a catch block, in which case it re-throws the
exception that is currently being handled by the catch block.

Because a throw statement unconditionally transfers control elsewhere, the end point of a throw statement is
never reachable.

When an exception is thrown, control is transferred to the first catch clause in an enclosing try statement that
can handle the exception. The process that takes place from the point of the exception being thrown to the point
of transferring control to a suitable exception handler is known as exception propagation. Propagation of an
exception consists of repeatedly evaluating the following steps until a catch clause that matches the exception
is found. In this description, the throw point is initially the location at which the exception is thrown.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

178 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• In the current function member, each try statement that encloses the throw point is examined. For each
statement S, starting with the innermost try statement and ending with the outermost try statement, the
following steps are evaluated:

o If the try block of S encloses the throw point and if S has one or more catch clauses, the catch
clauses are examined in order of appearance to locate a suitable handler for the exception. The first
catch clause that specifies the exception type or a base type of the exception type is considered a
match. A general catch clause (−8.10) is considered a match for any exception type. If a matching
catch clause is located, the exception propagation is completed by transferring control to the block of
that catch clause.

o Otherwise, if the try block or a catch block of S encloses the throw point and if S has a finally
block, control is transferred to the finally block. If the finally block throws another exception,
processing of the current exception is terminated. Otherwise, when control reaches the end point of the
finally block, processing of the current exception is continued.

• If an exception handler was not located in the current function member invocation, the function member
invocation is terminated. The steps above are then repeated for the caller of the function member with a
throw point corresponding to the statement from which the function member was invoked.

• If the exception processing terminates all function member invocations in the current thread, indicating that
the thread has no handler for the exception, then the thread is itself terminated. The impact of such
termination is implementation-defined.

8.10 The try statement
The try statement provides a mechanism for catching exceptions that occur during execution of a block. The
try statement furthermore provides the ability to specify a block of code that is always executed when control
leaves the try statement.

try-statement:
try block catch-clauses
try block finally-clause
try block catch-clauses finally-clause

 catch-clauses:
specific-catch-clauses general-catch-clauseopt
specific-catch-clausesopt general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
catch (class-type identifieropt) block

general-catch-clause:
catch block

finally-clause:
finally block

There are three possible forms of try statements:

• A try block followed by one or more catch blocks.

• A try block followed by a finally block.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 179

• A try block followed by one or more catch blocks followed by a finally block.

When a catch clause specifies a class-type, the type must be System.Exception or a type that derives from
System.Exception.

When a catch clause specifies both a class-type and an identifier, an exception variable of the given name and
type is declared. The exception variable corresponds to a local variable with a scope that extends over the
catch block. During execution of the catch block, the exception variable represents the exception currently
being handled. For the purpose of definite assignment checking, the exception variable is considered definitely
assigned in its entire scope.

Unless a catch clause includes an exception variable name, it is impossible to access the exception object in the
catch block.

A catch clause that specifies neither an exception type nor an exception variable name is called a general
catch clause. A try statement can only have one general catch clause, and if one is present it must be the last
catch clause.

Though the throw statement is restricted to throwing exceptions of type System.Exception or a type that
derives from System.Exception, other languages are not bound by this rule, and so may throw exceptions of
other types. A general catch clause can be used to catch such exceptions, and a throw statement with no
expression can be used to re-throw them.

In order to locate a handler for an exception, catch clauses are examined in lexical order. An error occurs if a
catch clause specifies a type that is the same as or derived from a type that was specified in an earlier catch
clause for the same try. Without this restriction it would be possible to write unreachable catch clauses.

Within a catch block, a throw statement (−8.9.5) with no expression can be used to re-throw the exception that
was caught by the catch block. Assignments to an exception variable do not alter the exception that is re -
thrown.

In the example
class Test
{
 static void F() {
 try {
 G();
 }
 catch (Exception e) {
 Console.WriteLine("Exception in F: " + e.Message);
 e = new Exception("F");
 throw; // re-throw
 }
 }

 static void G() {
 throw new Exception("G");
 }

 static void Main() {
 try {
 F();
 }
 catch (Exception e) {
 Console.WriteLine("Exception in Main: " + e.Message);
 }
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

180 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

the method F catches an exception, writes some diagnostic information to the console, alters the exception
variable, and re-throws the exception. The exception that is re-thrown is the original exception, so the output of
the program is:

Exception in F: G
Exception in Main: G

If the first catch block had thrown e instead of rethrowing the current exception, the output of the program
would be as follows:

Exception in F: G
Exception in Main: F

It is an error for a break, continue, or goto statement to transfer control out of a finally block. When a
break, continue, or goto statement occurs in a finally block, the target of the statement must be within
the same finally block, or otherwise a compile-time error occurs.

It is an error for a return statement to occur in a finally block.

A try statement is executed as follows:

• Control is transferred to the try block.

• When and if control reaches the end point of the try block:

o If the try statement has a finally block, the finally block is executed.

o Control is transferred to the end point of the try statement.

• If an exception is propagated to the try statement during execution of the try block:

o The catch clauses, if any, are examined in order of appearance to locate a suitable handler for the
exception. The first catch clause that specifies the exception type or a base type of the exception type
is considered a match. A general catch clause is considered a match for any exception type. If a
matching catch clause is located:

• If the matching catch clause declares an exception variable, the exception object is assigned to the
exception variable.

• Control is transferred to the matching catch block.

• When and if control reaches the end point of the catch block:

o If the try statement has a finally block, the finally block is executed.

o Control is transferred to the end point of the try statement.

• If an exception is propagated to the try statement during execution of the catch block:

o If the try statement has a finally block, the finally block is executed.

o The exception is propagated to the next enclosing try statement.

o If the try statement has no catch clauses or if no catch clause matches the exception:

• If the try statement has a finally block, the finally block is executed.

• The exception is propagated to the next enclosing try statement.

The statements of a finally block are always executed when control leaves a try statement. This is true
whether the control transfer occurs as a result of normal execution, as a result of executing a break, continue,
goto, or return statement, or as a result of propagating an exception out of the try statement.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 181

If an exception is thrown during execution of a finally block, the exception is propagated to the next
enclosing try statement. If another exception was in the process of being propagated, that exception is lost. The
process of propagating an exception is discussed further in the description of the throw statement (−8.9.5).

The try block of a try statement is reachable if the try statement is reachable.

A catch block of a try statement is reachable if the try statement is reachable.

The finally block of a try statement is reachable if the try statement is reachable.

The end point of a try statement is reachable if both of the following are true:

• The end point of the try block is reachable or the end point of at least one catch block is reachable.

• If a finally block is present, the end point of the finally block is reachable.

8.11 The checked and unchecked statements
The checked and unchecked statements are used to control the overflow checking context for integral-type
arithmetic operations and conversions.

checked-statement:
checked block

unchecked-statement:
unchecked block

The checked statement causes all expressions in the block to be evaluated in a checked context, and the
unchecked statement causes all expressions in the block to be evaluated in an unchecked context.

The checked and unchecked statements are precisely equivalent to the checked and unchecked operators
(−7.5.12), except that they operate on blocks instead of expressions.

8.12 The lock statement
The lock statement obtains the mutual-exclusion lock for a given object, executes a statement, and then
releases the lock.

lock-statement:
lock (expression) embedded-statement

The expression of a lock statement must denote a value of a reference-type. An implicit boxing conversion
(−6.1.5) is never performed for the expression of a lock statement, and thus it is an error for the expression to
denote a value of a value-type.

A lock statement of the form
lock (x) ...

where x is an expression of a reference-type, is precisely equivalent to
System.Threading.Monitor.Enter(x);
try {
 ...
}
finally {
 System.Threading.Monitor.Exit(x);
}

except that x is only evaluated once. The Enter and Exit methods of the System.Threading.Monitor
class are described in the CLR specification.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

182 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The System.Type object of a class can conveniently be used as the mutual-exclusion lock for static methods of
the class. For example:

class Cache
{
 public static void Add(object x) {
 lock (typeof(Cache)) {
 ...
 }
 }

 public static void Remove(object x) {
 lock (typeof(Cache)) {
 ...
 }
 }
}

8.13 The using statement
The using statement obtains one or more resources, executes a statement, and then disposes of the resource.

using-statement:
using (resource-acquisition) embedded-statement

resource-acquisition:
local-variable-declaration
expression

A resource is a class or struct that implements System.IDisposable, which includes a single parameterless
method named Dispose. Code that is using a resource can call Dispose to indicate that the resource is no
longer needed. If Dispose is not called, then automatic disposal eventually occurs as a consequence of garbage
collection.

If the form of resource-acquisition is local-variable-declaration then the type of the local-variable-declaration
must be System.IDisposable or a type that can be implicitly converted to System.IDisposable. If the
form of resource-acquisition is expression then this expression must be System.IDisposable or a type that
can be implicitly converted to System.IDisposable.

Local variables declared in a resource-acquisition are read-only, and must include an initializer.

A using statement is translated into three parts: acquisition, usage, and disposal. Usage of the resource is
implicitly enclosed in a try statement that includes a finally clause. This finally clause disposes of the
resource. If a null resource is acquired, then no call to Dispose is made, and no exception is thrown.

For example, a using statement of the form
using (R r1 = new R ()) {
 r1.F();
}

is precisely equivalent to
R r1 = new R();
try {
 r1.F();
}
finally {
 if (r1 != null) ((IDisposable)r1).Dispose();
}

A resource-acquisition may acquire multiple resources of a given type. This is equivalent to nested using
statements. For example, a using statement of the form

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 8 Statements

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 183

using (R r1 = new R(), r2 = new R()) {
 r1.F();
 r2.F();
}

is precisely equivalent to:
using (R r1 = new R())
 using (R r2 = new R()) {
 r1.F();
 r2.F();
 }

which is, by expansion, precisely equivalent to:
R r1 = new R();
try {
 R r2 = new R();
 try {
 r1.F();
 r2.F();
 }
 finally {
 if (r2 != null) ((IDisposable)r2).Dispose();
 }
}
finally {
 if (r1 != null) ((IDisposable)r1).Dispose();
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 9 Namespaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 185

9. Namespaces

C# programs are organized using namespaces. Namespaces are used both as an ” internal„ organization system
for a program, and as an ” external„ organization system’ a way of presenting program elements that are
exposed to other programs.

Using directives are provided to facilitate the use of namespaces.

9.1 Compilation units
A compilation-unit defines the overall structure of a source file. A compilation unit consi sts of zero or more
using-directives followed by zero or more attributes followed by zero or more namespace-member-declarations.

compilation-unit:
using-directivesopt attributesopt namespace-member-declarationsopt

A C# program consists of one or more compilation units, each contained in a separate source file. When a C#
program is compiled, all of the compilation units are processed together. Thus, compilation units can depend on
each other, possibly in a circular fashion.

The using-directives of a compilation unit affect the attributes and namespace-member-declarations of that
compilation unit, but have no effect on other compilation units.

The attributes of a compilation unit permit the specification of attributes for the target assembly and module.
Assemblies and modules act as physical containers for types. An assembly may consist of several physically
separate modules.

The namespace-member-declarations of each compilation unit of a program contribute members to a single
declaration space called the global namespace. For example:

File A.cs:
class A {}

File B.cs:
class B {}

The two compilation units contribute to the single global namespace, in this case declaring two classes with the
fully qualified names A and B. Because the two compilation units contribute to the same declaration space, it
would have been an error if each contained a declaration of a member with the same name.

9.2 Namespace declarations
A namespace-declaration consists of the keyword namespace, followed by a namespace name and body,
optionally followed by a semicolon.

namespace-declaration:
namespace qualified-identifier namespace-body ;opt

qualified-identifier:
identifier
qualified-identifier . identifier

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

186 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

namespace-body:
{ using-directivesopt namespace-member-declarationsopt }

A namespace-declaration may occur as a top-level declaration in a compilation-unit or as a member declaration
within another namespace-declaration. When a namespace-declaration occurs as a top-level declaration in a
compilation-unit, the namespace becomes a member of the global namespace. When a namespace-declaration
occurs within another namespace-declaration, the inner namespace becomes a member of the outer namespace.
In either case, the name of a namespace must be unique within the containing namespace.

Namespaces are implicitly public and the declaration of a namespace cannot include any access modifiers.

Within a namespace-body, the optional using-directives import the names of other namespaces and types,
allowing them to be referenced directly instead of through qualified names. The optional namespace-member-
declarations contribute members to the declaration space of the namespace. Note that all using-directives must
appear before any member declarations.

The qualified-identifier of a namespace-declaration may be single identifier or a sequence of identifiers
separated by ” .„ tokens. The latter form permits a program to define a nested namespace without lexically
nesting several namespace declarations. For example,

namespace N1.N2
{
 class A {}

 class B {}
}

is semantically equivalent to
namespace N1
{
 namespace N2
 {
 class A {}

 class B {}
 }
}

Namespaces are open-ended, and two namespace declarations with the same fully qualified name contribute to
the same declaration space (−3.3). In the example

namespace N1.N2
{
 class A {}
}

namespace N1.N2
{
 class B {}
}

the two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified names N1.N2.A and N1.N2.B. Because the two declarations contribute to the
same declaration space, it would have been an error if each contained a declaration of a member with the same
name.

9.3 Using directives
Using directives facilitate the use of namespaces and types defined in other namespaces. Using directives impact
the name resolution process of namespace-or-type-names (−3.8) and simple-names (−7.5.2), but unlike

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 9 Namespaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 187

declarations, using directives do not contribute new members to the underlying declaration spaces of the
compilation units or namespaces within which they are used.

using-directives:
using-directive
using-directives using-directive

using-directive:
using-alias-directive
using-namespace-directive

A using-alias-directive (−9.3.1) introduces an alias for a namespace or type.

A using-namespace-directive (−9.3.2) imports the type members of a namespace.

The scope of a using-directive extends over the namespace-member-declarations of its immediately containing
compilation unit or namespace body. The scope of a using-directive specifically does not include its peer using-
directives. Thus, peer using-directives do not affect each other, and the order in which they are written is
insignificant.

9.3.1 Using alias directives
A using-alias-directive introduces an identifier that serves as an alias for a namespace or type within the
immediately enclosing compilation unit or namespace body.

using-alias-directive:
using identifier = namespace-or-type-name ;

Within member declarations in a compilation unit or namespace body that contains a using-alias-directive, the
identifier introduced by the using-alias-directive can be used to reference the given namespace or type. For
example:

namespace N1.N2
{
 class A {}
}

namespace N3
{
 using A = N1.N2.A;

 class B: A {}
}

Above, within member declarations in the N3 namespace, A is an alias for N1.N2.A, and thus class N3.B
derives from class N1.N2.A. The same effect can be obtained by creating an alias R for N1.N2 and then
referencing R.A:

namespace N3
{
 using R = N1.N2;

 class B: R.A {}
}

The identifier of a using-alias-directive must be unique within the declaration space of the compilation unit or
namespace that immediately contains the using-alias-directive. For example:

namespace N3
{
 class A {}
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

188 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

namespace N3
{
 using A = N1.N2.A; // Error, A already exists
}

Above,, N3 already contains a member A, so it is an error for a using-alias-directive to use that identifier.
Likewise, it is an error for two or more using-alias-directives in the same compilation unit or namespace body to
declare aliases by the same name.

A using-alias-directive makes an alias available within a particular compilation unit or namespace body, but i t
does not contribute any new members to the underlying declaration space. In other words, a using-alias-
directive is not transitive but rather affects only the compilation unit or namespace body in which it occurs. In
the example

namespace N3
{
 using R = N1.N2;
}

namespace N3
{
 class B: R.A {} // Error, R unknown
}

the scope of the using-alias-directive that introduces R only extends to member declarations in the namespace
body in which it is contained, and R is thus unknown in the second namespace declaration. However, placing the
using-alias-directive in the containing compilation unit causes the alias to become available within both
namespace declarations:

using R = N1.N2;

namespace N3
{
 class B: R.A {}
}

namespace N3
{
 class C: R.A {}
}

Just like regular members, names introduced by using-alias-directives are hidden by similarly named members
in nested scopes. In the example

using R = N1.N2;

namespace N3
{
 class R {}

 class B: R.A {} // Error, R has no member A
}

the reference to R.A in the declaration of B causes an error because R refers to N3.R, not N1.N2.

The order in which using-alias-directives are written has no significance, and resolution of the namespace-or-
type-name referenced by a using-alias-directive is neither affected by the using-alias-directive itself nor by other
using-directives in the immediately containing compilation unit or namespace body. In other words, the
namespace-or-type-name of a using-alias-directive is resolved as if the immediately containing compilation unit
or namespace body had no using-directives. In the example

namespace N1.N2 {}

namespace N3
{
 using R1 = N1; // OK

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 9 Namespaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 189

 using R2 = N1.N2; // OK

 using R3 = R1.N2; // Error, R1 unknown
}

the last using-alias-directive is in error because it is not affected by the first using-alias-directive.

A using-alias-directive can create an alias for any namespace or type, including the namespace within which it
appears and any namespace or type nested within that namespace.

Accessing a namespace or type through an alias yields exactly the same result as accessing the namespace or
type through its declared name. For example, given

namespace N1.N2
{
 class A {}
}

namespace N3
{
 using R1 = N1;
 using R2 = N1.N2;

 class B
 {
 N1.N2.A a; // refers to N1.N2.A
 R1.N2.A b; // refers to N1.N2.A
 R2.A c; // refers to N1.N2.A
 }
}

the names N1.N2.A, R1.N2.A, and R2.A are completely equivalent and all refer to the class whose fully
qualified name is N1.N2.A.

9.3.2 Using namespace directives
A using-namespace-directive imports the types contained in a namespace into the immediately enclosing
compilation unit or namespace body, enabling the identifier of each type to be used without qualification.

using-namespace-directive:
using namespace-name ;

Within member declarations in a compilation unit or namespace body that contains a using-namespace-
directive, the types contained in the given namespace can be referenced directly. For example:

namespace N1.N2
{
 class A {}
}

namespace N3
{
 using N1.N2;

 class B: A {}
}

Above, within member declarations in the N3 namespace, the type members of N1.N2 are directly available, and
thus class N3.B derives from class N1.N2.A.

A using-namespace-directive imports the types contained in the given namespace, but specifically does not
import nested namespaces. In the example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

190 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

namespace N1.N2
{
 class A {}
}

namespace N3
{
 using N1;

 class B: N2.A {} // Error, N2 unknown
}

the using-namespace-directive imports the types contained in N1, but not the namespaces nested in N1. Thus, the
reference to N2.A in the declaration of B is in error because no members named N2 are in scope.

Unlike a using-alias-directive, a using-namespace-directive may import types whose identifiers are already
defined within the enclosing compilation unit or namespace body. In effect, names imported by a using-
namespace-directive are hidden by similarly named members in the enclosing compilation unit or namespace
body. For example:

namespace N1.N2
{
 class A {}

 class B {}
}

namespace N3
{
 using N1.N2;

 class A {}
}

Here, within member declarations in the N3 namespace, A refers to N3.A rather than N1.N2.A.

When more than one namespace imported by using-namespace-directives in the same compilation unit or
namespace body contain types by the same name, references to that name are considered ambiguous. In the
example

namespace N1
{
 class A {}
}

namespace N2
{
 class A {}
}

namespace N3
{
 using N1;

 using N2;

 class B: A {} // Error, A is ambiguous
}

both N1 and N2 contain a member A, and because N3 imports both, referencing A in N3 is an error. In this
situation, the conflict can be resolved either through qualification of references to A, or by introducing a using-
alias-directive that picks a particular A. For example:

namespace N3
{
 using N1;

 using N2;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 9 Namespaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 191

 using A = N1.A;

 class B: A {} // A means N1.A
}

Like a using-alias-directive, a using-namespace-directive does not contribute any new members to the
underlying declaration space of the compilation unit or namespace, but rather affects only the compilation unit
or namespace body in which it appears.

The namespace-name referenced by a using-namespace-directive is resolved in the same way as the namespace-
or-type-name referenced by a using-alias-directive. Thus, using-namespace-directives in the same compilation
unit or namespace body do not affect each other and can be written in any order.

9.4 Namespace members
A namespace-member-declaration is either a namespace-declaration (−9.2) or a type-declaration (−9.5).

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member-declaration:
namespace-declaration
type-declaration

A compilation unit or a namespace body can contain namespace-member-declarations, and such declarations
contribute new members to the underlying declaration space of the containing compilation unit or namespace
body.

9.5 Type declarations
A type-declaration is a class-declaration (−10.1), a struct-declaration (−11), an interface-declaration (−13.1),
an enum-declaration (−14.1), or a delegate-declaration (−15.1).

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

A type-declaration can occur as a top-level declaration in a compilation unit or as a member declaration within a
namespace, class, or struct.

When a type declaration for a type T occurs as a top-level declaration in a compilation unit, the fully qualified
name of the newly declared type is simply T. When a type declaration for a type T occurs within a namespace,
class, or struct, the fully qualified name of the newly declared type is N.T, where N is the fully qualified name of
the containing namespace, class, or struct.

A type declared within a class or struct is called a nested type (−10.2.6).

The permitted access modifiers and the default access for a type declaration depend on the context in which the
declaration takes place (−3.5.1):

• Types declared in compilation units or namespaces can have public or internal access. The default is
internal access.

• Types declared in classes can have public, protected internal, protected, internal, or private
access. The default is private access.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

192 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• Types declared in structs can have public, internal, or private access. The default is private access.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 193

10. Classes

A class is a data structure that may contain data members (constants and fields), function members (methods,
properties, indexers, events, operators, instance constructors, static constructors, and destructors), and nested
types. Class types support inheritance, a mechanism whereby a derived class can extend and specialize a base
class.

10.1 Class declarations
A class-declaration is a type-declaration (−9.5) that declares a new class.

class-declaration:
attributesopt class-modifiersopt class identifier class-baseopt class-body ;opt

A class-declaration consists of an optional set of attributes (−17), followed by an optional set of class-modifiers
(−10.1.1), followed by the keyword class and an identifier that names the class, followed by an optional class-
base specification (−10.1.2), followed by a class-body (−10.1.3), optionally followed by a semicolon.

10.1.1 Class modifiers
A class-declaration may optionally include a sequence of class modifiers:

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
new
public

protected

internal
private
abstract
sealed

It is an error for the same modifier to appear multiple times in a class declaration.

The new modifier is only permitted on nested classes. It specifies that the class hides an inherited member by the
same name, as described in −10.2.2.

The public, protected, internal, and private modifiers control the accessibility of the class. Depending
on the context in which the class declaration occurs, some of these modifiers may not be permitted (−3.5.1).

The abstract and sealed modifiers are discussed in the following sections.

10.1.1.1 Abstract classes
The abstract modifier is used to indicate that a class is incomplete and that it is intended to be used only as a
base class. An abstract class differs from a non-abstract class is the following ways:

• An abstract class cannot be instantiated directly, and it is an error to use the new operator on an abstract
class. While it is possible to have variables and values whose compile-time types are abstract, such variables

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

194 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

and values will necessarily either be null or contain references to instances of non-abstract classes derived
from the abstract types.

• An abstract class is permitted (but not required) to contain abstract members.

• An abstract class cannot be sealed.

When a non-abstract class is derived from an abstract class, the non-abstract class must include actual
implementations of all inherited abstract members. Such implementations are provided by overriding the
abstract members. In the example

abstract class A
{
 public abstract void F();
}

abstract class B: A
{
 public void G() {}
}

class C: B
{
 public override void F() {
 // actual implementation of F
 }
}

the abstract class A introduces an abstract method F. Class B introduces an additional method G, but since it
doesn§t provide an implementation of F, B must also be declared abstract. Class C overrides F and provides an
actual implementation. Since there are no abstract members in C, C is permitted (but not required) to be non-
abstract.

10.1.1.2 Sealed classes
The sealed modifier is used to prevent derivation from a class. An error occurs if a sealed class is specified as
the base class of another class.

A sealed class cannot also be an abstract class.

The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain run -time
optimizations. In particular, because a sealed class is known to never have any derived classes, it is possible to
transform virtual function member invocations on sealed class instances into non -virtual invocations.

10.1.2 Class base specification
A class declaration may include a class-base specification, which defines the direct base class of the class and
the interfaces (13) implemented by the class.

class-base:
: class-type
: interface-type-list
: class-type , interface-type-list

interface-type-list:
interface-type
interface-type-list , interface-type

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 195

10.1.2.1 Base classes
When a class-type is included in the class-base, it specifies the direct base class of the class being declared. If a
class declaration has no class-base, or if the class-base lists only interface types, the direct base class is assumed
to be object. A class inherits members from its direct base class, as described in −10.2.1.

In the example
class A {}

class B: A {}

class A is said to be the direct base class of B, and B is said to be derived from A. Since A does not explicitly
specify a direct base class, its direct base class is implicitly object.

The direct base class of a class type must be at least as accessible as the class type itself (−3.5.4). For example, it
is an error for a public class to derive from a private or internal class.

The direct base class of a class type must not be any of the following types: System.Array,
System.Delegate, System.Enum, or System.ValueType.

The base classes of a class are the direct base class and its base classes. In other words, the set of base classes is
the transitive closure of the direct base class relationship. Referring to the example above, the base classes of B
are A and object.

Except for class object, every class has exactly one direct base class. The object class has no direct base
class and is the ultimate base class of all other classes.

When a class B derives from a class A, it is an error for A to depend on B. A class directly depends on its direct
base class (if any) and directly depends on the class within which it is immediately nested (if any). Given this
definition, the complete set of classes upon which a class depends is the transitive closure of the directly
depends on relationship.

The example
class A: B {}

class B: C {}

class C: A {}

is in error because the classes circularly depend on themselves. Likewise, the example
class A: B.C {}

class B: A
{
 public class C {}
}

is in error because A depends on B.C (its direct base class), which depends on B (its immediately enclosing
class), which circularly depends on A.

Note that a class does not depend on the classes that are nested within it. In the example
class A
{
 class B: A {}
}

B depends on A (because A is both its direct base class and its immediately enclosing class), but A does not
depend on B (since B is neither a base class nor an enclosing class of A). Thus, the example is valid.

It is not possible to derive from a sealed class. In the example
sealed class A {}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

196 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

class B: A {} // Error, cannot derive from a sealed class

class B is in error because it attempts to derive from the sealed class A.

10.1.2.2 Interface implementations
A class-base specification may include a list of interface types, in which case the class is said to implement the
given interface types. Interface implementations are discussed further in −13.4.

10.1.3 Class body
The class-body of a class defines the members of the class.

class-body:
{ class-member-declarationsopt }

10.2 Class members
The members of a class consist of the members introduced by its class-member-declarations and the members
inherited from the direct base class.

class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
destructor-declaration
static-constructor-declaration
type-declaration

The members of a class are divided into the following categories:

• Constants, which represent constant values associated with the class (−10.3).

• Fields, which are the variables of the class (−10.4).

• Methods, which implement the computations and actions that can be performed by the class (−10.5).

• Properties, which define named attributes and the actions associated with reading and writing those
attributes (−10.6).

• Events, which define notifications that can be generated by the class (−10.7).

• Indexers, which permit instances of the class to be indexed in the same way as arrays (−10.8).

• Operators, which define the expression operators that can be applied to instances of the class (−10.9).

• Instance constructors, which implement the actions required to initialize instances of the class (−10.10)

• Destructors, which implement the actions to be performed before instances of the class are permanently
discarded (−10.12).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 197

• Static constructors, which implement the actions required to initialize the class itself (−10.11).

• Types, which represent the types that are local to the class (−9.5).

Members that can contain executable code are collectively known as the function members of the class (7.4).

A class-declaration creates a new declaration space (−3.3), and the class-member-declarations immediately
contained by the class-declaration introduce new members into this declaration space. The following rules
apply to class-member-declarations:

• Instance constructors, static constructors and destructors must have the same name as the immediately
enclosing class. All other members must have names that differ from the name of the immediately enclosing
class.

• The name of a constant, field, property, event, or type must differ from the names of all other members
declared in the same class.

• The name of a method must differ from the names of all other non-methods declared in the same class. In
addition, the signature (−3.6) of a method must differ from the signatures of all other methods declared in
the same class.

• The signature of an instance constructor must differ from the signatures of all other instance constructors
declared in the same class.

• The signature of an indexer must differ from the signatures of all other indexers declared in the same class.

• The signature of an operator must differ from the signatures of all other operators declared in the same class.

The inherited members of a class (−10.2.1) are not part of the declaration space of a class. Thus, a derived class
is allowed to declare a member with the same name or signature as an inherited member (which in effect hides
the inherited member).

10.2.1 Inheritance
A class inherits the members of its direct base class. Inheritance means that a class implicitly contains all
members of its direct base class, except for the instance constructors, static constructors, and destructors of the
base class. Some important aspects of inheritance are:

• Inheritance is transitive. If C is derived from B, and B is derived from A, then C inherits the members
declared in B as well as the members declared in A.

• A derived class extends its direct base class. A derived class can add new members to those it inherits, but it
cannot remove the definition of an inherited member.

• Instance constructors, static constructors, and destructors are not inherited, but all other members are,
regardless of their declared accessibility (−3.5). However, depending on their declared accessibility,
inherited members might not be accessible in a derived class.

• A derived class can hide (−3.7.1.2) inherited members by declaring new members with the same name or
signature. Note however that hiding an inherited member does not remove the member’ it merely makes
the member inaccessible in the derived class.

• An instance of a class contains a set of all instance fields declared in the class and its base classe s, and an
implicit conversion (−6.1.4) exists from a derived class type to any of its base class types. Thus, a reference
to an instance of some derived class can be treated as a reference to an instance of any of its base clas ses.

• A class can declare virtual methods, properties, and indexers, and derived classes can override the
implementation of these function members. This enables classes to exhibit polymorphic behavior wherein

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

198 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

the actions performed by a function member invocation varies depending on the run-time type of the
instance through which the function member is invoked.

10.2.2 The new modifier
A class-member-declaration is permitted to declare a member with the same name or signature as an inherited
member. When this occurs, the derived class member is said to hide the base class member. Hiding an inherited
member is not considered an error, but it does cause the compiler to issue a warning. To suppress the warning,
the declaration of the derived class member can include a new modifier to indicate that the derived member is
intended to hide the base member. This topic is discussed further in −3.7.1.2.

If a new modifier is included in a declaration that doesn§t hide an inherited member, a warning is issued. This
warning is suppressed by removing the new modifier.

It is an error to use the new and override modifiers in the same declaration.

10.2.3 Access modifiers
A class-member-declaration can have any one of the five possible kinds of declared accessibility (−3.5.1):
public, protected internal, protected, internal, or private. Except for the protected internal
combination, it is an error to specify more than one access modifier. When a class-member-declaration does not
include any access modifiers, private is assumed.

10.2.4 Constituent types
Types that are used in the declaration of a member are called the constituent types of the member. Possible
constituent types are the type of a constant, field, property, event, or indexer, the ret urn type of a method or
operator, and the parameter types of a method, indexer, operator, or instance constructor. The constituent types
of a member must be at least as accessible as the member itself (−3.5.4).

10.2.5 Static and instance members
Members of a class are either static members or instance members. Generally speaking, it is useful to think of
static members as belonging to classes and instance members as belonging to objects (instances of classes).

When a field, method, property, event, operator, or constructor declaration includes a static modifier, it
declares a static member. In addition, a constant or type declaration implicitly declares a static member. Static
members have the following characteristics:

• When a static member is referenced in a member-access (−7.5.4) of the form E.M, E must denote a type that
has a member M. It is an error for E to denote an instance.

• A static field identifies exactly one storage location. No matter how many instances of a class are created,
there is only ever one copy of a static field.

• A static function member does not operate on a specific instance, and it is an error to refer to this in such a
function member.

When a field, method, property, event, indexer, constructor, or destructor declaration does not include a static
modifier, it declares an instance member. (An instance member is sometimes called a non -static member.)
Instance members have the following characteristics:

• When an instance member is referenced in a member-access (−7.5.4) of the form E.M, E must denote an
instance of a type that has a member M. It is an error for E to denote a type.

• Every instance of a class contains a separate set of all instance fields of the cl ass.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 199

• An instance function member operates on a given instance of the class, and this instance can be accessed as
this (−7.5.7).

The following example illustrates the rules for accessing static and instance members:
class Test
{
 int x;
 static int y;

 void F() {
 x = 1; // Ok, same as this.x = 1
 y = 1; // Ok, same as Test.y = 1
 }

 static void G() {
 x = 1; // Error, cannot access this.x
 y = 1; // Ok, same as Test.y = 1
 }

 static void Main() {
 Test t = new Test();
 t.x = 1; // Ok
 t.y = 1; // Error, cannot access static member through instance
 Test.x = 1; // Error, cannot access instance member through type
 Test.y = 1; // Ok
 }
}

The F method shows that in an instance function member, a simple-name (−7.5.2) can be used to access both
instance members and static members. The G method shows that in a static function member, it is an error to
access an instance member through a simple-name. The Main method shows that in a member-access (−7.5.4),
instance members must be accessed through instances, and static members must be accessed through types.

10.2.6 Nested types
A type declared within a class or struct is called a nested type. A type that is declared within a compilation unit
or namespace is called a non-nested type.

In the example
class A
{
 class B
 {
 static void F() {
 Console.WriteLine("A.B.F");
 }
 }
}

class B is a nested type because it is declared within class A, and class A is a non-nested type because it is
declared within a compilation unit.

10.2.6.1 Fully qualified name
The fully qualified name (−3.8.1) for a nested type is S.N where S is the fully qualified name of the type in
which N is declared.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

200 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

10.2.6.2 Declared accessibility
Non-nested types can have public or internal declared accessibility and default to internal declared
accessibility. Nested types can have these forms of declared accessibility plus one or more additional forms of
declared accessibility, depending on whether the containing type is a class or struct:

• A nested type that is declared in a class can have any of the five forms of declared accessibility (public,
protected internal, protected, internal, or private) and, like other class members, defaults to
private declared accessibility.

• A nested type that is declared in a struct can have any of three forms of declared accessibility (public,
internal, or private) and, like other struct members, defaults to private declared accessibility.

The example
public class List
{
 // Private data structure
 private class Node
 {
 public object Data;
 public Node Next;

 public Node(object data, Node next) {
 this.Data = data;
 this.Next = next;
 }
 }

 private Node first = null;
 private Node last = null;

 // Public interface

 public void AddToFront(object o) {...}

 public void AddToBack(object o) {...}

 public object RemoveFromFront() {...}

 public object AddToFront() {...}

 public int Count { get {...} }

}

declares a private nested class Node.

10.2.6.3 Hiding
A nested type may hide (−3.7.1) a base member. The new modifier is permitted on nested type declarations so
that hiding can be expressed explicitly. The example

using System;

class Base
{
 public static void M() {
 Console.WriteLine("C.M");
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 201

class Derived: Base
{
 new public class M
 {
 public static void F() {
 Console.WriteLine("Derived.M.F");
 }
 }
}

class Test
{
 static void Main() {
 Derived.M.F();
 }
}

shows a nested class M that hides the method M defined in Base.

10.2.6.4 this access
A nested type and its containing type do not have a special relationship with regard to this-access (−7.5.7).
Specifically, this within a nested type cannot be used to refer to instance members of the containing type. In
cases where a nested type needs access to the instance members of its containing type, access can be provided
by providing the this for the instance of the containing type as a constructor argument for the nested type. In
the example

using System;

class C
{
 int i = 123;

 public void F() {
 Nested n = new Nested(this);
 n.G();
 }

 public class Nested {
 C this_c;

 public Nested(C c) {
 this_c = c;
 }

 public void G() {
 Console.WriteLine(this_c.i);
 }
 }
}

class Test {
 static void Main() {
 C c = new C();
 c.F();
 }
}

shows this technique. A C instance creates an instance of Nested and passes its own this to Nested§s
constructor in order to provide subsequent access to C§s instance members.

10.2.6.5 Access to private and protected members of the containing type
A nested type has access to all of the members that are accessible to its containing type, including members of
the containing type that have private and protected declared accessibility. The example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

202 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

using System;

class C
{
 private static void F() {
 Console.WriteLine("C.F");
 }

 public class Nested
 {
 public static void G() {
 F();
 }
 }
}

class Test
{
 static void Main() {
 C.Nested.G();
 }
}

shows a class C that contains a nested class Nested. Within Nested, the method G calls the static method F
defined in C, and F has private declared accessibility.

A nested type also may access protected members defined in a base type of its containing type. In the example
using System;

class Base
{
 protected void F() {
 Console.WriteLine("Base.F");
 }
}

class Derived: Base
{
 public class Nested
 {
 public void G() {
 Derived d = new Derived();
 d.F(); // ok
 }
 }
}

class Test
{
 static void Main() {
 Derived.Nested n = new Derived.Nested();
 n.G();
 }
}

the nested class Derived.Nested accesses the protected method F defined in Derived§s base class, Base, by
calling through an instance of Derived.

10.2.7 Reserved member names
To facilitate the underlying C# runtime implementation, for each source member declaration that is a property,
event, or indexer, the implementation must reserve two method signatures based on the kind of the member
declaration, its name, and its type. It is an error for a program to declare a member whose signature matches one
of these reserved signatures, even if the underlying runtime implementation does not make use of these
reservations.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 203

The reserved names do not introduce declarations, thus they do not participate in member lookup. However, a
declaration§s associated reserved method signatures do participate in inheri tance (−10.2.1), and can be hidden
with the new modifier (−10.2.2).

The reservation of these names serves three purposes:

• To allow the underlying implementation to use an ordinary identifier as a me thod name for get or set access
to the C# language feature.

• To allow other languages to interoperate using an ordinary identifier as a method name for get or set access
to the C# language feature.

• To help ensure that the source accepted by one conforming compiler is accepted by another, by making the
specifics of reserved member names consistent across all C# implementations.

The declaration of a destructor (−10.12) also causes a signature to be reserved (−10.2.7.4).

10.2.7.1 Member Names Reserved for Properties
For a property P (−10.6) of type T, the following signatures are reserved:

T get_P();
void set_P(T value);

Both signatures are reserved, even if the property is read-only or write-only.

10.2.7.2 Member Names Reserved for Events
For an event E (−10.7) of delegate type T, the following signatures are reserved:

void add_E(T handler);
void remove_E(T handler);

10.2.7.3 Member Names Reserved for Indexers
For an indexer (−10.8) of type T with parameter-list L, the following signatures are reserved:

T get_Item(L);
void set_Item(L, T value);

Both signatures are reserved, even if the indexer is read-only or write-only.

10.2.7.4 Member Names Reserved for Destructors
For a class containing a destructor (−10.12), the following signature is reserved:

10.3 void Finalize();Constants
A constant is a class member that represents a constant value: a value that can be computed at compile -time. A
constant-declaration introduces one or more constants of a given type.

constant-declaration:
attributesopt constant-modifiersopt const type constant-declarators ;

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

204 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

constant-modifier:
new
public
protected

internal
private

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

A constant-declaration may include a set of attributes (−17), a new modifier (−10.2.2), and a valid combination
of the four access modifiers (−10.2.3). The attributes and modifiers apply to all of the members declared by the
constant-declaration. Even though constants are considered static members, a constant-declaration neither
requires nor allows a static modifier.

The type of a constant-declaration specifies the type of the members introduced by the declaration. The type is
followed by a list of constant-declarators, each of which introduces a new member. A constant-declarator
consists of an identifier that names the member, followed by an ” =„ token, followed by a constant-expression
(−7.15) that gives the value of the member.

The type specified in a constant declaration must be sbyte, byte, short, ushort, int, uint, long, ulong,
char, float, double, decimal, bool, string, an enum-type, or a reference-type. Each constant-expression
must yield a value of the target type or of a type that can be converted to the target type by an implicit
conversion (−6.1).

The type of a constant must be at least as accessible as the constant itself (−3.5.4).

The value of a constant is obtained in an expression using a simple-name (−7.5.2) or a member-access (−7.5.4).

A constant can itself participate in a constant-expression. Thus, a constant may be used in any construct that
requires a constant-expression. Examples of such constructs include case labels, goto case statements, enum
member declarations, attributes, and other constant declarations.

As described in −7.15, a constant-expression is an expression that can be fully evaluated at compile-time. Since
the only way to create a non-null value of a reference-type other than string is to apply the new operator, and
since the new operator is not permitted in a constant-expression, the only possible value for constants of
reference-types other than string is null.

When a symbolic name for a constant value is desired, but when the type of the value is not permitted in a
constant declaration, or when the value cannot be computed at compile-time by a constant-expression, a
readonly field (−10.4.2) may be used instead.

A constant declaration that declares multiple constants is equivalent to multiple declarations of single constants
with the same attributes, modifiers, and type. For example

class A
{
 public const double X = 1.0, Y = 2.0, Z = 3.0;
}

is equivalent to

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 205

class A
{
 public const double X = 1.0;
 public const double Y = 2.0;
 public const double Z = 3.0;
}

Constants are permitted to depend on other constants within the same program as long as the dependencies are
not of a circular nature. The compiler automatically arranges to evaluate the constant declarations in the
appropriate order. In the example

class A
{
 public const int X = B.Z + 1;
 public const int Y = 10;
}

class B
{
 public const int Z = A.Y + 1;
}

the compiler first evaluates A.Y, then evaluates B.Z, and finally evaluates A.X, producing the values 10, 11,
and 12. Constant declarations may depend on constants from other programs, but such dependencies are only
possible in one direction. Referring to the example above, if A and B were declared in separate programs, it
would be possible for A.X to depend on B.Z, but B.Z could then not simultaneously depend on A.Y.

10.4 Fields
A field is a member that represents a variable associated with an object or class. A field-declaration introduces
one or more fields of a given type.

field-declaration:
attributesopt field-modifiersopt type variable-declarators ;

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected

internal
private

static

readonly

volatile

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializer

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

206 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

A field-declaration may include a set of attributes (−17), a new modifier (−10.2.2), a valid combination of the
four access modifiers (−10.2.3), a static modifier (−10.4.1). In addition, a field-declaration may include a
readonly modifier (−10.4.2) or a volatile modifier (−10.4.3) but not both. The attributes and modifiers
apply to all of the members declared by the field-declaration.

The type of a field-declaration specifies the type of the members introduced by the declaration. The type is
followed by a list of variable-declarators, each of which introduces a new member. A variable-declarator
consists of an identifier that names the member, optionally followed by an ” =„ token and a variable-initializer
(−10.4.5) that gives the initial value of the member.

The type of a field must be at least as accessible as the field itself (−3.5.4).

The value of a field is obtained in an expression using a simple-name (−7.5.2) or a member-access (−7.5.4). The
value of a non-readonly field is modified using an assignment (−7.13). The value of a non-readonly field can be
both obtained and modified using postfix increment and decrement operators (−7.5.9) and prefix increment and
decrement operators (−7.6.7).

A field declaration that declares multiple fields is equivalent to multiple declarations of single fields with the
same attributes, modifiers, and type. For example

class A
{
 public static int X = 1, Y, Z = 100;
}

is equivalent to
class A
{
 public static int X = 1;
 public static int Y;
 public static int Z = 100;
}

10.4.1 Static and instance fields
When a field-declaration includes a static modifier, the fields introduced by the declaration are static fields.
When no static modifier is present, the fields introduced by the declaration are instance fields. Static fields
and instance fields are two of the several kinds of variables (−5) supported by C#, and are at times referred to as
static variables and instance variables.

A static field identifies exactly one storage location. No matter how many instances of a class are created, there
is only ever one copy of a static field. A static field comes into existence when the type in which it is declared is
loaded, and ceases to exist when the type in which it is declared is unloaded.

Every instance of a class contains a separate set of all instance fields of the class. An instance field comes into
existence when a new instance of its class is created, and ceases to exist when there are no references to that
instance and the destructor of the instance has executed.

When a field is referenced in a member-access (−7.5.4) of the form E.M, if M is a static field, E must denote a
type that has a field M, and if M is an instance field, E must denote an instance of a type that has a field M.

The differences between static and instance members are discussed further in −10.2.5.

10.4.2 Readonly fields
When a field-declaration includes a readonly modifier, the fields introduced by the declaration are readonly
fields. Direct assignments to readonly fields can only occur as part of the declaration or in an instance
constructor (for readonly non-static fields) or static constructor (for readonly static fields) in the same class. (A

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 207

readonly field can be assigned multiple times in these contexts.) Specifically, direct assignments to a readonly
field are permitted only in the following contexts:

• In the variable-declarator that introduces the field (by including a variable-initializer in the declaration).

• For an instance field, in the instance constructors of the class that contains the field d eclaration, or for a
static field, in the static constructor of the class the that contains the field declaration. These are also the
only contexts in which it is valid to pass a readonly field as an out or ref parameter.

Attempting to assign to a readonly field or pass it as an out or ref parameter in any other context is an error.

10.4.2.1 Using static readonly fields for constants
A static readonly field is useful when a symbolic name for a constant value is desired, but when the type of
the value is not permitted in a const declaration, or when the value cannot be computed at compile-time. In the
example

public class Color
{
 public static readonly Color Black = new Color(0, 0, 0);
 public static readonly Color White = new Color(255, 255, 255);
 public static readonly Color Red = new Color(255, 0, 0);
 public static readonly Color Green = new Color(0, 255, 0);
 public static readonly Color Blue = new Color(0, 0, 255);

 private byte red, green, blue;

 public Color(byte r, byte g, byte b) {
 red = r;
 green = g;
 blue = b;
 }
}

the Black, White, Red, Green, and Blue members cannot be declared as const members because their
values cannot be computed at compile-time. However, declaring them as static readonly fields instead has
much the same effect.

10.4.2.2 Versioning of constants and static readonly fields
Constants and readonly fields have different binary versioning semantics. When an expression references a
constant, the value of the constant is obtained at compile-time, but when an expression references a readonly
field, the value of the field is not obtained until run-time. Consider an application that consists of two separate
programs:

namespace Program1
{
 public class Utils
 {
 public static readonly int X = 1;
 }
}

namespace Program2
{
 class Test
 {
 static void Main() {
 Console.WriteLine(Program1.Utils.X);
 }
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

208 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The Program1 and Program2 namespaces denote two programs that are compiled separately. Because
Program1.Utils.X is declared as a static readonly field, the value output by the Console.WriteLine
statement is not known at compile-time, but rather is obtained at run-time. Thus, if the value of X is changed and
Program1 is recompiled, the Console.WriteLine statement will output the new value even if Program2
isn§t recompiled. However, had X been a constant, the value of X would have been obtained at the time
Program2 was compiled, and would remain unaffected by changes in Program1 until Program2 is
recompiled.

10.4.3 Volatile fields
When a field-declaration includes a volatile modifier, the fields introduced by the declaration are volatile
fields.

For non-volatile fields, optimization techniques that reorder instructions can lead to unexpected and
unpredictable results in multi-threaded programs that access fields without synchronization such as that
provided by the lock-statement (−8.12). These optimizations can be performed by the compiler, the runtime
system, or by hardware.

For volatile fields, such reordering optimizations are restricted so that a store into a field cannot be mo ved
forward across a store into a volatile field, and the evaluation of a field cannot be moved backward across the
evaluation of a volatile field.

The type of a volatile field must be one of the following:

• A reference-type.

• The type byte, sbyte, short, ushort, int, uint, char, float, or bool.

• An enum-type with an enum base type of byte, sbyte, short, ushort, int, or uint.

10.4.4 Field initialization
The initial value of a field, whether it be a static field or an instance field, is the default value (−5.2) of the
field§s type. It is not possible to observe the value of a field before this default initialization has occurred, and a
field is thus never ” uninitialized„ . The example

class Test
{
 static bool b;
 int i;

 static void Main() {
 Test t = new Test();
 Console.WriteLine("b = {0}, i = {1}", b, t.i);
 }
}

produces the output
b = False, i = 0

because b and i are both automatically initialized to default values.

10.4.5 Variable initializers
Field declarations may include variable-initializers. For static fields, variable initializers correspond to
assignment statements that are executed during class initialization. For instance fields, variable initializers
correspond to assignment statements that are executed when an instance of the class is created.

The example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 209

class Test
{
 static double x = Math.Sqrt(2.0);
 int i = 100;
 string s = "Hello";

 static void Main() {
 Test a = new Test();
 Console.WriteLine("x = {0}, i = {1}, s = {2}", x, a.i, a.s);
 }
}

produces the output
x = 1.414213562373095, i = 100, s = Hello

because an assignment to x occurs when static field initializers execute and assignments to i and s occur when
the instance field initializers execute.

The default value initialization described in −10.4.4 occurs for all fields, including fields that have variable
initializers. Thus, when a class is initialized, all of its static fields are first initialized to their default values, and
then the static field initializers are executed in textual order. Likewise, when an instance of a class is created, all
of its instance fields are first initialized to their default values, and then the instance field initializers are
executed in textual order.

It is possible for static fields with variable initializers to be observed in their default value state. However, this is
strongly discouraged as a matter of style. The example

class Test
{
 static int a = b + 1;
 static int b = a + 1;

 static void Main() {
 Console.WriteLine("a = {0}, b = {1}", a, b);
 }
}

exhibits this behavior. Despite the circular definitions of a and b, the program is legal. It produces the output
a = 1, b = 2

because the static fields a and b are initialized to 0 (the default value for int) before their initializers are
executed. When the initializer for a runs, the value of b is zero, and so a is initialized to 1. When the initializer
for b runs, the value of a is already 1, and so b is initialized to 2.

10.4.5.1 Static field initialization
The static field variable initializers of a class correspond to a sequence of assignments that are executed at an
implementation-dependent time prior to the static constructor for the class (if any) and prior to the first use of a
static field of that class. The static field variable initializers are executed in the textual order in which they
appear in the class declaration. The class initialization process is described further in −10.11.

10.4.5.2 Instance field initialization
The instance field variable initializers of a class correspond to a se quence of assignments that are executed
immediately upon entry to any one of the instance constructors (−10.10.1) of the class. The variable initializers
are executed in the textual order in which they appear in the class decla ration. The class instance creation and
initialization process is described further in −10.10.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

210 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

A variable initializer for an instance field cannot reference the instance being created. Thus, it is an error to
reference this in a variable initializer, as it is an error for a variable initializer to reference any instance
member through a simple-name. In the example

class A
{
 int x = 1;
 int y = x + 1; // Error, reference to instance member of this
}

the variable initializer for y is in error because it references a member of the instance being created.

10.5 Methods
A method is a member that implements a computation or action that can be performed by an object or class.
Methods are declared using method-declarations:

method-declaration:
method-header method-body

method-header:
attributesopt method-modifiersopt return-type member-name (formal-parameter-listopt)

method-modifiers:
method-modifier
method-modifiers method-modifier

method-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

return-type:
type
void

member-name:
identifier
interface-type . identifier

method-body:
block
;

A method-declaration may include a set of attributes (−17), a new modifier (−10.2.2), an extern modifier
(−10.5.7), a valid combination of the four access modifiers (−10.2.3), and a valid combination of the static
(−10.5.2), virtual (−10.5.3), override (−10.5.4), and abstract (−10.5.6) modifiers. In addition, a method
that includes the override modifier may also include the sealed modifier (−10.5.5).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 211

The static, virtual, override, and abstract modifiers are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract method can override a vir tual one.

The return-type of a method declaration specifies the type of the value computed and returned by the method.
The return-type is void if the method does not return a value.

The member-name specifies the name of the method. Unless the method is an explicit interface member
implementation (−13.4.1), the member-name is simply an identifier. For an explicit interface member
implementation, the member-name consists of an interface-type followed by a ” .„ and an identifier.

The optional formal-parameter-list specifies the parameters of the method (−10.5.1).

The return-type and each of the types referenced in the formal-parameter-list of a method must be at least as
accessible as the method itself (−3.5.4).

For abstract and extern methods, the method-body consists simply of a semicolon. For all other methods,
the method-body consists of a block which specifies the statements to execute when the method is invoked.

The name and the formal parameter list of a method define the signature (−3.6) of the method. Specifically, the
signature of a method consists of its name and the number, modifiers, and types of its formal parameters. The
return type is not part of a method§s signature, nor are the names of the formal parameters.

The name of a method must differ from the names of all other non-methods declared in the same class. In
addition, the signature of a method must differ from the signatures of al l other methods declared in the same
class.

10.5.1 Method parameters
The parameters of a method, if any, are declared by the method§s formal-parameter-list.

formal-parameter-list:
fixed-parameters
fixed-parameters , parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters , fixed-parameter

fixed-parameter:
attributesopt parameter-modifieropt type identifier

parameter-modifier:
ref

out

parameter-array:
attributesopt params array-type identifier

The formal parameter list consists of one or more comma-separated parameters of which only the last may be a
parameter-array.

A fixed-parameter consists of an optional set of attributes (−17), an optional ref or out modifier, a type, and an
identifier. Each fixed-parameter declares a parameter of the given type with the given name.

A parameter-array consists of an optional set of attributes (−17), a params modifier, an array-type, and an
identifier. A parameter array declares a single parameter of the given array type with the given name. The array-
type of a parameter array must be a single-dimensional array type (−12.1). In a method invocation, a parameter

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

212 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

array permits either a single argument of the given array type to be specified, or it permits zero or more
arguments of the array element type to be specified. Parameter arrays are further described in −10.5.1.4.

A method declaration creates a separate declaration space for parameters and local variables. Names are
introduced into this declaration space by the formal parameter list of the method and by local variable
declarations in the block of the method. All names in the declaration space of a method must be unique. Thus, it
is an error for a parameter or local variable to have the same name as another parameter or local variable.

A method invocation (−7.5.5.1) creates a copy, specific to that invocation, of the formal parameters and loc al
variables of the method, and the argument list of the invocation assigns values or variable references to the
newly created formal parameters. Within the block of a method, formal parameters can be referenced by their
identifiers in simple-name expressions (−7.5.2).

There are four kinds of formal parameters:

• Value parameters, which are declared without any modifiers.

• Reference parameters, which are declared with the ref modifier.

• Output parameters, which are declared with the out modifier.

• Parameter arrays, which are declared with the params modifier.

As described in −3.6, the ref and out modifiers are part of a method§s signature, but the params modifier is
not.

10.5.1.1 Value parameters
A parameter declared with no modifiers is a value parameter. A value parameter corresponds to a local variable
that gets its initial value from the corresponding argument supplied in the method invocation.

When a formal parameter is a value parameter, the corresponding argument in a method invocation must be an
expression of a type that is implicitly convertible (−6.1) to the formal parameter type.

A method is permitted to assign new values to a value parameter. Such assignments only affect the l ocal storage
location represented by the value parameter’ they have no effect on the actual argument given in the method
invocation.

10.5.1.2 Reference parameters
A parameter declared with a ref modifier is a reference parameter. Unlike a value parameter, a reference
parameter does not create a new storage location. Instead, a reference parameter represents the same storage
location as the variable given as the argument in the method invocation.

When a formal parameter is a reference parameter, the corresponding argument in a method invocation must
consist of the keyword ref followed by a variable-reference (−5.4) of the same type as the formal parameter. A
variable must be definitely assigned before it can be passed as a reference paramet er.

Within a method, a reference parameter is always considered definitely assigned.

The example
class Test
{
 static void Swap(ref int x, ref int y) {
 int temp = x;
 x = y;
 y = temp;
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 213

 static void Main() {
 int i = 1, j = 2;
 Swap(ref i, ref j);
 Console.WriteLine("i = {0}, j = {1}", i, j);
 }
}

produces the output
i = 2, j = 1

For the invocation of Swap in Main, x represents i and y represents j. Thus, the invocation has the effect of
swapping the values of i and j.

In a method that takes reference parameters it is possible for multiple names to represent the same storage
location. In the example

class A
{
 string s;

 void F(ref string a, ref string b) {
 s = "One";
 a = "Two";
 b = "Three";
 }

 void G() {
 F(ref s, ref s);
 }
}

the invocation of F in G passes a reference to s for both a and b. Thus, for that invocation, the names s, a, and b
all refer to the same storage location, and the three assignments all modify the instance field s.

10.5.1.3 Output parameters
A parameter declared with an out modifier is an output parameter. Similar to a reference parameter, an output
parameter does not create a new storage location. Instead, an output parameter represents the same storage
location as the variable given as the argument in the method invocation.

When a formal parameter is an output parameter, the corresponding argument in a method invocation must
consist of the keyword out followed by a variable-reference (−5.4) of the same type as the formal parameter. A
variable need not be definitely assigned before it can be passed as an output parameter, but following an
invocation where a variable was passed as an output parameter, the variable is considered definitely assigned.

Within a method, just like a local variable, an output parameter is initially considered unassigned and must be
definitely assigned before its value is used.

Every output parameter of a method must be definitely assigned before the method returns.

Output parameters are typically used in methods that produce multiple return values. For example:
class Test
{
 static void SplitPath(string path, out string dir, out string name) {
 int i = path.Length;
 while (i > 0) {
 char ch = path[i “ 1];
 if (ch == '\\' || ch == '/' || ch == ':') break;
 i--;
 }
 dir = path.Substring(0, i);
 name = path.Substring(i);
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

214 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 static void Main() {
 string dir, name;
 SplitPath("c:\\Windows\\System\\hello.txt", out dir, out name);
 Console.WriteLine(dir);
 Console.WriteLine(name);
 }
}

The example produces the output:
c:\Windows\System\
hello.txt

Note that the dir and name variables can be unassigned before they are passed to SplitPath, and that they are
considered definitely assigned following the call.

10.5.1.4 Parameter arrays
A parameter declared with a params modifier is a parameter array. If a formal parameter list includes a
parameter array, it must be the right-most parameter in the list and it must be of a single-dimensional array type.
For example, the types string[] and string[][] can be used as the type of a parameter array, but the type
string[,] can not. It is not possible to combine the params modifier with the ref and out modifiers.

A parameter array permits arguments to be specified in one of two ways in a method invocation:

• The argument given for a parameter array can be a single expression of a type that is implicitly convertible
(−6.1) to the parameter array type. In this case, the parameter array acts precisely like a value parameter.

• Alternatively, the invocation can specify zero or more arguments for the parameter array, where each
argument is an expression of a type that is implicitly convertible (−6.1) to the element type of the parameter
array. In this case, the invocation creates an instance of the parameter array type with a length corresponding
to the number of arguments, initializes the elements of the array instance with the given argument values,
and uses the newly created array instance as the actual argument.

Except for allowing a variable number of arguments in an invocation, a parameter array is precisely equivalent
to a value parameter (−10.5.1.1) of the same type.

The example
class Test
{
 static void F(params int[] args) {
 Console.WriteLine("Array contains {0} elements:", args.Length);
 foreach (int i in args) Console.Write(" {0}", i);
 Console.WriteLine();
 }

 static void Main() {
 int[] arr = {1, 2, 3};
 F(a);
 F(10, 20, 30, 40);
 F();
 }
}

produces the output
Array contains 3 elements: 1 2 3
Array contains 4 elements: 10 20 30 40
Array contains 0 elements:

The first invocation of F simply passes the array a as a value parameter. The second invocation of F
automatically creates a four-element int[] with the given element values and passes that array instance as a

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 215

value parameter. Likewise, the third invocation of F creates a zero-element int[] and passes that instance as a
value parameter. The second and third invocations are precisely equivalent to writing:

F(new int[] {10, 20, 30, 40});
F(new int[] {});

When performing overload resolution, a method with a parameter array may be applicable either in its normal
form or in its expanded form (−7.4.2.1). The expanded form of a method is available only if the normal form of
the method is not applicable and only if a method with the same signature as the expanded form is not already
declared in the same type.

The example
class Test
{
 static void F(params object[] a) {
 Console.WriteLine("F(object[])");
 }

 static void F() {
 Console.WriteLine("F()");
 }

 static void F(object a0, object a1) {
 Console.WriteLine("F(object,object)");
 }

 static void Main() {
 F();
 F(1);
 F(1, 2);
 F(1, 2, 3);
 F(1, 2, 3, 4);
 }
}

produces the output
F();
F(object[]);
F(object,object);
F(object[]);
F(object[]);

In the example, two of the possible expanded forms of the method with a parameter array are already included in
the class as regular methods. These expanded forms are therefore not considered when performing overload
resolution, and the first and third method invocations thus select the regular methods. When a class declares a
method with a parameter array, it is not uncommon to also include some of the expanded forms as regular
methods. By doing so it is possible to avoid the allocation of an array instance that occurs when an expanded
form of a method with a parameter array is invoked.

When the type of a parameter array is object[], a potential ambiguity arises between the normal form of the
method and the expended form for a single object parameter. The reason for the ambiguity is that an
object[] is itself implicitly convertible to type object. The ambiguity presents no problem, however, since it
can be resolved by inserting a cast if needed.

The example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

216 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

class Test
{
 static void F(params object[] args) {
 foreach (object o in a) {
 Console.Write(o.GetType().FullName);
 Console.Write(" ");
 }
 Console.WriteLine();
 }

 static void Main() {
 object[] a = {1, "Hello", 123.456};
 object o = a;
 F(a);
 F((object)a);
 F(o);
 F((object[])o);
 }
}

produces the output
System.Int32 System.String System.Double
System.Object[]
System.Object[]
System.Int32 System.String System.Double

In the first and last invocations of F, the normal form of F is applicable because an implicit conversion exists
from the argument type to the parameter type (both are of type object[]). Thus, overload resolution selects the
normal form of F, and the argument is passed as a regular value parameter. In the second and third invocations,
the normal form of F is not applicable because no implicit conversion exists from the argument type to the
parameter type (type object cannot be implicitly converted to type object[]). However, the expanded form
of F is applicable, and it is therefore selected by overload resolution. As a result, a one-element object[] is
created by the invocation, and the single element of the array is initialized with the given argument value (which
itself is a reference to an object[]).

10.5.2 Static and instance methods
When a method declaration includes a static modifier, the method is said to be a static method. When no
static modifier is present, the method is said to be an instance method.

A static method does not operate on a specific instance, and it is an error to refer to this in a static method.
Furthermore, it is an error for a static method to include any of the following modifiers: virtual, abstract,
or override.

An instance method operates on a given instance of a class, and this instance can be accessed as this (−7.5.7).

The differences between static and instance members are further discussed in −10.2.5.

10.5.3 Virtual methods
When an instance method declaration includes a virtual modifier, the method is said to be a virtual method.
When no virtual modifier is present, the method is said to be a non-virtual method.

It is an error for a method declaration that includes the virtual modifier to include any of the following
modifiers: static, abstract, or override.

The implementation of a non-virtual method is invariant: The implementation is the same whether the method is
invoked on an instance of the class in which it is declared or an instance of a derived class. In contrast, the
implementation of a virtual method can be superseded by derived classes. The process of superseding the
implementation of an inherited virtual method is known as overriding the method (−10.5.4).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 217

In a virtual method invocation, the run-time type of the instance for which the invocation takes place determines
the actual method implementation to invoke. In a non-virtual method invocation, the compile-time type of the
instance is the determining factor. In precise terms, when a method named N is invoked with an argument list A
on an instance with a compile-time type C and a run-time type R (where R is either C or a class derived from C),
the invocation is processed as follows:

• First, overload resolution is applied to C, N, and A, to select a specific method M from the set of methods
declared in and inherited by C. This is described in −7.5.5.1.

• Then, if M is a non-virtual method, M is invoked.

• Otherwise, M is a virtual method, and the most derived implementation of M with respect to R is invoked.

For every virtual method declared in or inherited by a class, there exists a most derived implementation of the
method with respect to that class. The most derived implementation of a virtual method M with respect to a class
R is determined as follows:

• If R contains the introducing virtual declaration of M, then this is the most derived implementation of M.

• Otherwise, if R contains an override of M, then this is the most derived implementation of M.

• Otherwise, the most derived implementation of M is the same as that of the direct base class of R.

The following example illustrates the differences between virtual and non -virtual methods:
class A
{
 public void F() { Console.WriteLine("A.F"); }

 public virtual void G() { Console.WriteLine("A.G"); }
}

class B: A
{
 new public void F() { Console.WriteLine("B.F"); }

 public override void G() { Console.WriteLine("B.G"); }
}

class Test
{
 static void Main() {
 B b = new B();
 A a = b;
 a.F();
 b.F();
 a.G();
 b.G();
 }
}

In the example, A introduces a non-virtual method F and a virtual method G. The class B introduces a new non-
virtual method F, thus hiding the inherited F, and also overrides the inherited method G. The example produces
the output:

A.F
B.F
B.G
B.G

Notice that the statement a.G() invokes B.G, not A.G. This is because the run-time type of the instance (which
is B), not the compile-time type of the instance (which is A), determines the actual method implementation to
invoke.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

218 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

Because methods are allowed to hide inherited methods, it is possible for a class to contain sev eral virtual
methods with the same signature. This does not present an ambiguity problem, since all but the most derived
method are hidden. In the example

class A
{
 public virtual void F() { Console.WriteLine("A.F"); }
}

class B: A
{
 public override void F() { Console.WriteLine("B.F"); }
}

class C: B
{
 new public virtual void F() { Console.WriteLine("C.F"); }
}

class D: C
{
 public override void F() { Console.WriteLine("D.F"); }
}

class Test
{
 static void Main() {
 D d = new D();
 A a = d;
 B b = d;
 C c = d;
 a.F();
 b.F();
 c.F();
 d.F();
 }
}

the C and D classes contain two virtual methods with the same signature: The one introduced by A and the one
introduced by C. The method introduced by C hides the method inherited from A. Thus, the override declaration
in D overrides the method introduced by C, and it is not possible for D to override the method introduced by A.
The example produces the output:

B.F
B.F
D.F
D.F

Note that it is possible to invoke the hidden virtual method by accessing an ins tance of D through a less derived
type in which the method is not hidden.

10.5.4 Override methods
When an instance method declaration includes an override modifier, the method is said to be an override
method. An override method overrides an inherited virtual method with the same signature. Whereas a virtual
method declaration introduces a new method, an override method declaration specializes an existing inherited
virtual method by providing a new implementation of the method.

It is an error for an override method declaration to include any of the following modifiers: new, static, or
virtual. An override method declaration may include the abstract modifier. This enables a virtual method
to be overridden by an abstract method.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 219

The method overridden by an override declaration is known as the overridden base method. For an override
method M declared in a class C, the overridden base method is determined by examining each base class of C,
starting with the direct base class of C and continuing with each successive direct base class, until an accessible
method with the same signature as M is located. For the purposes of locating the overridden base method, a
method is considered accessible if it is public, if it is protected, if it is protected internal, or if it is
internal and declared in the same program as C.

A compile-time error occurs unless all of the following are true for an override declaration:

• An overridden base method can be located as described above.

• The overridden base method is a virtual, abstract, or override method. In other words, the overridden base
method cannot be static or non-virtual.

• The overridden base method is not a sealed method.

• The override declaration and the overridden base method have the same declared accessibility. In other
words, an override declaration cannot change the accessibility of the virtual method.

An override declaration can access the overridden base method using a base-access (−7.5.8). In the example
class A
{
 int x;

 public virtual void PrintFields() {
 Console.WriteLine("x = {0}", x);
 }
}

class B: A
{
 int y;

 public override void PrintFields() {
 base.PrintFields();
 Console.WriteLine("y = {0}", y);
 }
}

the base.PrintFields() invocation in B invokes the PrintFields method declared in A. A base-access
disables the virtual invocation mechanism and simply treats the base method as a non -virtual method. Had the
invocation in B been written ((A)this).PrintFields(), it would recursively invoke the PrintFields
method declared in B, not the one declared in A, since PrintFields is virtual and the run-time type of
((A)this) is B.

Only by including an override modifier can a method override another method. In all other cases, a method
with the same signature as an inherited method simply hides the inherited method. In the example

class A
{
 public virtual void F() {}
}

class B: A
{
 public virtual void F() {} // Warning, hiding inherited F()
}

the F method in B does not include an override modifier and therefore does not override the F method in A.
Rather, the F method in B hides the method in A, and a warning is reported because the declaration does not
include a new modifier.

In the example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

220 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

class A
{
 public virtual void F() {}
}

class B: A
{
 new private void F() {} // Hides A.F within B
}

class C: B
{
 public override void F() {} // Ok, overrides A.F
}

the F method in B hides the virtual F method inherited from A. Since the new F in B has private access, its scope
only includes the class body of B and does not extend to C. The declaration of F in C is therefore permitted to
override the F inherited from A.

10.5.5 Sealed methods
When an instance method declaration includes a sealed modifier, the method is said to be a sealed method. A
sealed method overrides an inherited virtual method with the same signature.

An override method can also be marked with the sealed modifier. Use of this modifier prevents a derived class
from further overriding the method. The sealed modifier can only be used in combination with the override
modifier.

The example
class A
{
 public virtual void F() {
 Console.WriteLine("A.F");
 }

 public virtual void G() {
 Console.WriteLine("A.G");
 }
}

class B: A
{
 sealed override public void F() {
 Console.WriteLine("B.F");
 }

 override public void G() {
 Console.WriteLine("B.G");
 }
}

class C: B
{
 override public void G() {
 Console.WriteLine("C.G");
 }
}

the class B provides two override methods: an F method that has the sealed modifier and a G method that does
not. B§s use of the sealed modifier prevents C from further overriding F.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 221

10.5.6 Abstract methods
When an instance method declaration includes an abstract modifier, the method is said to be an abstract
method. Although an abstract method is implicitly also a virtual method, it cannot have the virtual modifier.

An abstract method declaration introduces a new virtual method but does not provide an implementation of the
method. Instead, non-abstract derived classes are required to provide their own implementation by overriding
the method. Because an abstract method provides no actual implementation, the method-body of an abstract
method simply consists of a semicolon.

Abstract method declarations are only permitted in abstract classes (−10.1.1.1).

It is an error for an abstract method declaration to include the static or extern modifiers.

In the example
public abstract class Shape
{
 public abstract void Paint(Graphics g, Rectangle r);
}

public class Ellipse: Shape
{
 public override void Paint(Graphics g, Rectangle r) {
 g.drawEllipse(r);
 }
}

public class Box: Shape
{
 public override void Paint(Graphics g, Rectangle r) {
 g.drawRect(r);
 }
}

the Shape class defines the abstract notion of a geometrical shape object that can paint itself. The Paint
method is abstract because there is no meaningful default implementation. The Ellipse and Box classes are
concrete Shape implementations. Because these classes are non-abstract, they are required to override the
Paint method and provide an actual implementation.

It is an error for a base-access (−7.5.8) to reference an abstract method. In the example
class A
{
 public abstract void F();
}

class B: A
{
 public override void F() {
 base.F(); // Error, base.F is abstract
 }
}

an error is reported for the base.F() invocation because it references an abstract method.

An abstract method declaration is permitted to override a virtual method. This allows an abstract class to force
re-implementation of the method in derived classes, and makes the original implementation of the method
unavailable. In the example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

222 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

class A
{
 public virtual void F() {
 Console.WriteLine("A.F");
 }
}

abstract class B: A
{
 public abstract override void F();
}

class C: B
{
 public override void F() {
 Console.WriteLine("C.F");
 }
}

class A declares a virtual method, class B overrides this method with an abstract method, and class C overrides
the abstract method to provide its own implementation.

10.5.7 External methods
When a method declaration includes an extern modifier, the method is said to be an external method. External
methods are implemented externally, using a language other than C#. Because an external method declaration
provides no actual implementation, the method-body of an external method simply consists of a semicolon.

The extern modifier is typically used in conjunction with a DllImport attribute (−B.8), allowing external
methods to be implemented by DLLs (Dynamic Link Libraries). The execution environment may support other
mechanisms whereby implementations of external methods can be provided.

It is an error for an external method declaration to also include the abstract modifier. When an external
method includes a DllImport attribute, the method declaration must also include a static modifier.

This example demonstrates the use of the extern modifier and the DllImport attribute:
class Path
{
 [DllImport("kernel32", setLastError=true)]
 static extern bool CreateDirectory(string name, SecurityAttributes sa);

 [DllImport("kernel32", setLastError=true)]
 static extern bool RemoveDirectory(string name);

 [DllImport("kernel32", setLastError=true)]
 static extern int GetCurrentDirectory(int bufSize, StringBuilder buf);

 [DllImport("kernel32", setLastError=true)]
 static extern bool SetCurrentDirectory(string name);
}

10.5.8 Method body
The method-body of a method declaration consists of either a block or a semicolon.

Abstract and external method declarations do not provide a method implementation, so their method bodies
simply consist of a semicolon. For any other method, the method body is a block (−8.2) that contains the
statements to execute when the method is invoked.

When the return type of a method is void, return statements (−8.9.4) in the method body are not permitted to
specify an expression. If execution of the method body of a void method completes normally (that is, control
flows off the end of the method body), the method simply returns to its caller.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 223

When the return type of a method is not void, each return statement in the method body must specify an
expression of a type that is implicitly convertible to the return type. The endpoint of the method body of a value -
returning method must not be reachable. In other words, in a value-returning method, control is not permitted to
flow off the end of the method body.

In the example
class A
{
 public int F() {} // Error, return value required

 public int G() {
 return 1;
 }

 public int H(bool b) {
 if (b) {
 return 1;
 }
 else {
 return 0;
 }
 }
}

the value-returning F method is in error because control can flow off the end of the method body. The G and H
methods are correct because all possible execution paths end in a return statement that specifies a return value.

10.5.9 Method overloading
The method overload resolution rules are described in −7.4.2.

10.6 Properties
A property is a member that provides access to a characteristic of an object or a class. Examples of properties
include the length of a string, the size of a font, the caption of a window, the name of a customer, and so on.
Properties are a natural extension of fields’ both are named members with associated types, and the syntax for
accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations.
Instead, properties have accessors that specify the statements to be executed when their values are read or
written. Properties thus provide a mechanism for associating actions with the reading and writing of an object §s
attributes; furthermore, they permit such attributes to be computed.

Properties are declared using property-declarations:

property-declaration:
attributesopt property-modifiersopt type member-name { accessor-declarations }

property-modifiers:
property-modifier
property-modifiers property-modifier

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

224 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

property-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

member-name:
identifier
interface-type . identifier

A property-declaration may include a set of attributes (−17), a new modifier (−10.2.2), an extern modifier
(−10.6.4), a valid combination of the four access modifiers (−10.2.3), and a valid combination of the static
(−10.5.2), virtual (−10.5.3), override (−10.5.4), and abstract (−10.5.6) modifiers. In addition, a property
that includes the override modifier may also include the sealed modifier (−10.5.5).

The static, virtual, override, and abstract modifiers are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract property can override a virtual
one.

The type of a property declaration specifies the type of the property introduced by the declaration, and the
member-name specifies the name of the property. Unless the property is an explicit interface member
implementation, the member-name is simply an identifier. For an explicit interface member implementation
(−13.4.1), the member-name consists of an interface-type followed by a ” .„ and an identifier.

The type of a property must be at least as accessible as the property itself (−3.5.4).

The accessor-declarations, which must be enclosed in ” {„ and ” }„ tokens, declare the accessors (−10.6.2) of the
property. The accessors specify the executable statements associated with reading and writing the property.

Even though the syntax for accessing a property is the same as that for a field, a property is not classified as a
variable. Thus, it is not possible to pass a property as a ref or out argument.

10.6.1 Static and instance properties
When a property declaration includes a static modifier, the property is said to be a static property. When no
static modifier is present, the property is said to be an instance property.

A static property is not associated with a specific instance, and it is an error to refer to this in the accessors of a
static property. Furthermore, it is an error for a static property to include any of the following modifiers:
virtual, abstract, or override.

An instance property is associated with a given instance of a class, and this instance can be accessed as this
(−7.5.7) in the accessors of the property.

When a property is referenced in a member-access (−7.5.4) of the form E.M, if M is a static property, E must
denote a type that has a property M, and if M is an instance property, E must denote an instance that has a
property M.

The differences between static and instance members are further discussed in −10.2.5.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 225

10.6.2 Accessors
The accessor-declarations of a property specify the executable statements associated with reading and writing
the property.

accessor-declarations:
get-accessor-declaration set-accessor-declarationopt
set-accessor-declaration get-accessor-declarationopt

get-accessor-declaration:
attributesopt get accessor-body

set-accessor-declaration:
attributesopt set accessor-body

accessor-body:
block
;

The accessor declarations consist of a get-accessor-declaration, a set-accessor-declaration, or both. Each
accessor declaration consists of the token get or set followed by an accessor-body. For abstract and
extern properties, the accessor-body for each accessor specified is simply a semicolon. For other properties,
the accessor-body for each accessor specified is a block which contains the statements to be executed when the
corresponding accessor is invoked.

A get accessor corresponds to a parameterless method with a return value of the property type. Except as the
target of an assignment, when a property is referenced in an expression, the get accessor of the property is
invoked to compute the value of the property (−7.1.1). The body of a get accessor must conform to the rules for
value-returning methods described in −10.5.8. In particular, all return statements in the body of a get accessor
must specify an expression that is implicitly convertible to the property type. Furthermore, the endpoint of a get
accessor must not be reachable.

A set accessor corresponds to a method with a single value parameter of the property type and a void return
type. The implicit parameter of a set accessor is always named value. When a property is referenced as the
target of an assignment (−7.13), or as the operand of ++ or -- (−7.5.9,−7.6.7), the set accessor is invoked with
an argument (whose value is that of the right-hand side of the assignment or the operand of the ++ or --
operator) that provides the new value (−7.13.1). The body of a set accessor must conform to the rules for void
methods described in −10.5.8. In particular, return statements in the set accessor body are not permitted to
specify an expression. Since a set accessor implicitly has a parameter named value, it is an error for a local
variable declaration in a set accessor to have that name.

Based on the presence or absence of the get and set accessors, a property is classified as follows:

• A property that includes both a get accessor and a set accessor is said to be a read-write property.

• A property that has only a get accessor is said to be a read-only property. It is an error for a read-only
property to be the target of an assignment.

• A property that has only a set accessor is said to be a write-only property. Except as the target of an
assignment, it is an error to reference a write-only property in an expression.

In the example
public class Button: Control
{
 private string caption;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

226 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 public string Caption {
 get {
 return caption;
 }
 set {
 if (caption != value) {
 caption = value;
 Repaint();
 }
 }
 }

 public override void Paint(Graphics g, Rectangle r) {
 // Painting code goes here
 }
}

the Button control declares a public Caption property. The get accessor of the Caption property returns the
string stored in the private caption field. The set accessor checks if the new value is different from the
current value, and if so, it stores the new value and repaints the control. Properties often follow the pattern
shown above: The get accessor simply returns a value stored in a private field, and the set accessor modifies
the private field and then performs any additional actions required to fully update the state of the object.

Given the Button class above, the following is an example of use of the Caption property:
Button okButton = new Button();
okButton.Caption = "OK"; // Invokes set accessor
string s = okButton.Caption; // Invokes get accessor

Here, the set accessor is invoked by assigning a value to the property, and the get accessor is invoked by
referencing the property in an expression.

The get and set accessors of a property are not distinct members, and it is not possible to declare the accessors
of a property separately. As such, it is not possible for the two accessors of a read -write property to have
different accessibility. The example

class A
{
 private string name;

 public string Name { // Error, duplicate member name
 get { return name; }
 }

 public string Name { // Error, duplicate member name
 set { name = value; }
 }
}

does not declare a single read-write property. Rather, it declares two properties with the same name, one read-
only and one write-only. Since two members declared in the same class cannot have the same name, the
example causes a compile-time error to occur.

When a derived class declares a property by the same name as an inherited property, the derived property hides
the inherited property with respect to both reading and writing. In the example

class A
{
 public int P {
 set {...}
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 227

class B: A
{
 new public int P {
 get {...}
 }
}

the P property in B hides the P property in A with respect to both reading and writing. Thus, in the statements
B b = new B();
b.P = 1; // Error, B.P is read-only
((A)b).P = 1; // Ok, reference to A.P

the assignment to b.P causes an error to be reported, since the read-only P property in B hides the write-only P
property in A. Note, however, that a cast can be used to access the hidden P property.

Unlike public fields, properties provide a separation between an object§s internal state and its public interface.
Consider the example:

class Label
{
 private int x, y;
 private string caption;

 public Label(int x, int y, string caption) {
 this.x = x;
 this.y = y;
 this.caption = caption;
 }

 public int X {
 get { return x; }
 }

 public int Y {
 get { return y; }
 }

 public Point Location {
 get { return new Point(x, y); }
 }

 public string Caption {
 get { return caption; }
 }
}

Here, the Label class uses two int fields, x and y, to store its location. The location is publicly exposed both
as an X and a Y property and as a Location property of type Point. If, in a future version of Label, it
becomes more convenient to store the location as a Point internally, the change can be made without affecting
the public interface of the class:

class Label
{
 private Point location;
 private string caption;

 public Label(int x, int y, string caption) {
 this.location = new Point(x, y);
 this.caption = caption;
 }

 public int X {
 get { return location.x; }
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

228 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 public int Y {
 get { return location.y; }
 }

 public Point Location {
 get { return location; }
 }

 public string Caption {
 get { return caption; }
 }
}

Had x and y instead been public readonly fields, it would have been impossible to make such a change to
the Label class.

Exposing state through properties is not necessarily any less efficient than exposing fields directly. In particular,
when a property is non-virtual and contains only a small amount of code, the execution environment may
replace calls to accessors with the actual code of the accessors. This process is known as inlining, and it makes
property access as efficient as field access, yet preserves the increased flexibility of properties.

Since invoking a get accessor is conceptually equivalent to reading the value of a field, it is considered bad
programming style for get accessors to have observable side-effects. In the example

class Counter
{
 private int next;

 public int Next {
 get { return next++; }
 }
}

the value of the Next property depends on the number of times the property has previously been accessed. Thus,
accessing the property produces an observable side-effect, and the property should be implemented as a method
instead.

The ” no side-effects„ convention for get accessors doesn§t mean that get accessors should always be written to
simply return values stored in fields. Indeed, get accessors often compute the value of a property by accessing
multiple fields or invoking methods. However, a properly designed get accessor performs no actions that cause
observable changes in the state of the object.

Properties can be used to delay initialization of a resource until the moment it is firs t referenced. For example:
using System.IO;

public class Console
{
 private static TextReader reader;
 private static TextWriter writer;
 private static TextWriter error;

 public static TextReader In {
 get {
 if (reader == null) {
 reader = new StreamReader(File.OpenStandardInput());
 }
 return reader;
 }
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 229

 public static TextWriter Out {
 get {
 if (writer == null) {
 writer = new StreamWriter(File.OpenStandardOutput());
 }
 return writer;
 }
 }

 public static TextWriter Error {
 get {
 if (error == null) {
 error = new StreamWriter(File.OpenStandardError());
 }
 return error;
 }
 }
}

The Console class contains three properties, In, Out, and Error, that represent the standard input, output, and
error devices, respectively. By exposing these members as properties, the Console class can delay their
initialization until they are actually used. For example, upon first referencing the Out property, as in

Console.Out.WriteLine("hello, world");

the underlying TextWriter for the output device is created. But if the application makes no reference to the In
and Error properties, then no objects are created for those devices.

10.6.3 Virtual, sealed, override, and abstract accessors
A property declaration may include a valid combination of the static, virtual, override, and abstract
modifiers. A property that includes the override modifier may also include the sealed modifier (−10.5.5).

The static, virtual, override, and abstract modifiers are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract property can override a virtual
one. A virtual property declaration specifies that the accessors of the property are virtual. The virtual
modifier applies to both accessors of a read-write property’ it is not possible for only one accessor of a read-
write property to be virtual.

An abstract property declaration specifies that the accessors of the property are virtual, but does not provide
an actual implementation of the accessors. Instead, non-abstract derived classes are required to provide their
own implementation for the accessors by overriding the property. Because an accessor for an abstract property
declaration provides no actual implementation, its accessor-body simply consists of a semicolon.

A property declaration that includes both the abstract and override modifiers specifies that the property is
abstract and overrides a base property. The accessors of such a property are also abstract.

Abstract property declarations are only permitted in abstract classes (−10.1.1.1).The accessors of an inherited
virtual property can be overridden in a derived class by including a property declaration that specifies an
override directive. This is known as an overriding property declaration. An overriding property declaration
does not declare a new property. Instead, it simply specializes the implementations of the accessors of an
existing virtual property.

An overriding property declaration must specify the exact same accessibility modifiers, type, and name as the
inherited property. If the inherited property has only a single accessor (i.e., if the inherited property is read -only
or write-only), the overriding property must include only that accessor. If the inherited property includes both
accessors (i.e., if the inherited property is read-write), the overriding property can include either a single
accessor or both accessors.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

230 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

An overriding property declaration may include the sealed modifier. Use of this modifier prevents a derived
class from further overriding the property. The accessors of a sealed property are also sealed. It is an error for an
overriding property declaration to include a new modifier.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract accessors
behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules described in −10.5.3,
−10.5.4, −10.5.5, and −10.5.6 apply as if accessors were methods of a corresponding form:

• A get accessor corresponds to a parameterless method with a return value of the property type and the same
modifiers as the containing property.

• A set accessor corresponds to a method with a single value parameter of the property type, a void return
type, and the same modifiers as the containing property.

In the example
abstract class A
{
 int y;

 public virtual int X {
 get { return 0; }
 }

 public virtual int Y {
 get { return y; }
 set { y = value; }
 }

 public abstract int Z { get; set; }
}

X is a virtual read-only property, Y is a virtual read-write property, and Z is an abstract read-write property.
Because Z is abstract, the containing class A must also be declared abstract.

A class that derives from A is show below:
class B: A
{
 int z;

 public override int X {
 get { return base.X + 1; }
 }

 public override int Y {
 set { base.Y = value < 0? 0: value; }
 }

 public override int Z {
 get { return z; }
 set { z = value; }
 }
}

Here, the declarations of X, Y, and Z are overriding property declarations. Each property declaration exactly
matches the accessibility modifiers, type, and name of the corresponding inherited property. The get accessor
of X and the set accessor of Y use the base keyword to access the inherited accessors. The declaration of Z
overrides both abstract accessors’ thus, there are no outstanding abstract function members in B, and B is
permitted to be a non-abstract class.

10.6.4 External properties
When a property declaration includes an extern modifier, the property is said to be an external property. Like
external methods (−10.5.7), external properties are implemented externally, using a language other than C#.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 231

Because an external property declaration provides no actual implementation, each of the accessor-declarations
of a property consists of a semicolon.

It is an error for an external property declaration to also include the abstract modifier. When an external
property includes a DllImport attribute, the property declaration must also include a static modifier.

10.7 Events
An event is a member that enables an object or class to provide notifications. Clients can attach executable c ode
for events by supplying event handlers.

Events are declared using event-declarations:

event-declaration:
attributesopt event-modifiersopt event type variable-declarators ;
attributesopt event-modifiersopt event type member-name { event-accessor-declarations }

event-modifiers:
event-modifier
event-modifiers event-modifier

event-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

event-accessor-declarations:
add-accessor-declaration remove-accessor-declaration
remove-accessor-declaration add-accessor-declaration

add-accessor-declaration:
attributesopt add block

remove-accessor-declaration:
attributesopt remove block

An event-declaration may include a set of attributes (−17), a new modifier (−10.2.2), an extern modifier
(−10.7.4), a valid combination of the four access modifiers (−10.2.3), and a valid combination of the static
(−10.5.2), virtual (−10.5.3), override (−10.5.4), and abstract (−10.5.6) modifiers. In addition, an event
that includes the override modifier may also include the sealed modifier (−10.5.5).

The static, virtual, override, and abstract modifiers are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract event can override a virtual one.

An event declaration may include event-accessor-declarations. However, if it does not, the compiler supplies
them automatically.

An event declaration that omits event-accessor-declarations defines one or more events’ one for each of the
variable-declarators. The attributes and modifiers apply to all of the members declared by such an event-
declaration.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

232 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

An abstract event is declared with an event-declaration that omits event-accessor-declarations. It is an error for
an event-declaration to include both the abstract modifier and event-accessor-declarations.

The type of an event declaration must be a delegate-type (−4.2), and that delegate-type must be at least as
accessible as the event itself (−3.5.4).

An event can be used as the left hand operand of the += and -= operators (−7.13.3). These operators are used to
attach or remove event handlers to or from an event, and the access modifiers of the event control the contexts in
which such operations are permitted.

Since += and -= are the only operations that are permitted on an event outside the type that declares the event,
external code can add and remove handlers for an event, but cannot in any other way obtain or modify the
underlying list of event handlers.

Within the program text of the class or struct that contains the declaration of an event, certain events can be used
like fields. To be used in this way, an event must not be abstract, and must not explicitly include event-accessor-
declarations. Such an event can be used in any context that permits a field.

In the example
public delegate void EventHandler(object sender, EventArgs e);

public class Button: Control
{
 public event EventHandler Click;

 protected void OnClick(EventArgs e) {
 if (Click != null) Click(this, e);
 }

 public void Reset() {
 Click = null;
 }
}

Click is used as a field within the Button class. As the example demonstrates, the field can be examined,
modified, and used in delegate invocation expressions. The OnClick method in the Button class ” raises„ the
Click event. The notion of raising an event is precisely equivalent to invoking the delegate represented by the
event’ thus, there are no special language constructs for raising events. Note that the delegate invocation is
preceded by a check that ensures the delegate is non-null.

Outside the declaration of the Button class, the Click member can only be used on the left hand side of the +=
and -= operators, as in

b.Click += new EventHandler(...);

which appends a delegate to the invocation list of the Click event, and
b.Click -= new EventHandler(...);

which removes a delegate from the invocation list of the Click event.

In an operation of the form x += y or x -= y, when x is an event and the reference takes place outside the type
that contains the declaration of x, the result of the operation has type void (as opposed to the type of x). This
rule prohibits external code from indirectly examining the underlying dele gate of an event.

The following example shows how event handlers are attached to instances of the Button class above:
public class LoginDialog: Form
{
 Button OkButton;
 Button CancelButton;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 233

 public LoginDialog() {
 OkButton = new Button(...);
 OkButton.Click += new EventHandler(OkButtonClick);
 CancelButton = new Button(...);
 CancelButton.Click += new EventHandler(CancelButtonClick);
 }

 void OkButtonClick(object sender, EventArgs e) {
 // Handle OkButton.Click event
 }

 void CancelButtonClick(object sender, EventArgs e) {
 // Handle CancelButton.Click event
 }
}

Here, the instance constructor for LoginDialog creates two Button instances and attaches event handlers to
the Click events.

10.7.1 Event accessors
Event declarations typically omit event-accessor-declarations, as in the Button example above. In cases where
the storage cost of one field per event is not acceptable, a class can include event-accessor-declarations and use
a private mechanism for storing the list of event handlers.

The event-accessor-declarations of an event specify the executable statements associated with adding and
removing event handlers.

The accessor declarations consist of an add-accessor-declaration and a remove-accessor-declaration. Each
accessor declaration consists of the token add or remove followed by a block. The block associated with an
add-accessor-declaration specifies the statements to execute when an event handler is added, and the block
associated with a remove-accessor-declaration specifies the statements to execute when an event handler is
removed.

Each add-accessor-declaration and remove-accessor-declaration corresponds to a method with a single value
parameter of the event type and a void return type. The implicit parameter of an event accessor is named
value. When an event is used in an event assignment, the appropriate event accessor is used. If the assignment
operator is += then the add accessor is used, and if the assignment operator is -= then the remove accessor is
used. In either case, the right hand operand of the assignment operator is used as the argument to the event
accessor. The block of an add-accessor-declaration or a remove-accessor-declaration must conform to the rules
for void methods described in −10.5.8. In particular, return statements in such a block are not permitted to
specify an expression.

Since an event accessor implicitly has a parameter named value, it is an error for a local variable declared in an
event accessor to have that name.

In the example
class Control: Component
{
 // Unique keys for events
 static readonly object mouseDownEventKey = new object();
 static readonly object mouseUpEventKey = new object();

 // Return event handler associated with key
 protected delegate GetEventHandler(object key) {...}

 // Add event handler associated with key
 protected void AddEventHandler(object key, Delegate handler) {...}

 // Remove event handler associated with key
 protected void RemoveEventHandler(object key, Delegate handler) {...}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

234 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 // MouseDown event
 public event MouseEventHandler MouseDown {
 add { AddEventHandler(mouseDownEventKey, value); }
 remove { RemoveEventHandler(mouseDownEventKey, value); }
 }

 // MouseUp event
 public event MouseEventHandler MouseUp {
 add { AddEventHandler(mouseUpEventKey, value); }
 remove { RemoveEventHandler(mouseUpEventKey, value); }
 }
}

the Control class implements an internal storage mechanism for events. The AddEventHandler method
associates a delegate value with a key, the GetEventHandler method returns the delegate currently associated
with a key, and the RemoveEventHandler method removes a delegate as an event handler for the specified
event. Presumably, the underlying storage mechanism is designed such that there is no cost for associating a
null delegate value with a key, and thus unhandled events consume no storage.

10.7.2 Static and instance events
When an event declaration includes a static modifier, the event is said to be a static event. When no static
modifier is present, the event is said to be an instance event.

A static event is not associated with a specific instance, and it is an error to refer to this in the accessors of a
static event. Furthermore, it is an error for a static event to include any of the following modifiers: virtual,
abstract, or override.

An instance event is associated with a given instance of a class, and this instance can be accessed as this
(−7.5.7) in the accessors of the event.

When an event is referenced in a member-access (−7.5.4) of the form E.M, if M is a static event, E must denote a
type, and if M is an instance event, E must denote an instance.

The differences between static and instance members are discussed further in −10.2.5.

10.7.3 Virtual, sealed, override, and abstract accessors
An event declaration may include a valid combination of the static, sealed, virtual, override, and
abstract modifiers. An event that includes the override modifier may also include the sealed modifier
(−10.5.5).

The static, virtual, override, and abstract modifiers are mutually exclusive except in one case. The
abstract and override modifiers may be used together so that an abstract event can override a virtual one.

A virtual event declaration specifies that the accessors of the event are virtual. The virtual modifier applies
to both accessors of an event.

An abstract event declaration specifies that the accessors of the event are virtual, but does not provide an
actual implementation of the accessors. Instead, non-abstract derived classes are required to provide their own
implementation for the accessors by overriding the event. Because an accessor for an abstract event declaration
provides no actual implementation, its accessor-body simply consists of a semicolon.

An event declaration that includes both the abstract and override modifiers specifies that the event is
abstract and overrides a base event. The accessors of such an event are also abstract.

Abstract event declarations are only permitted in abstract classes (−10.1.1.1).

The accessors of an inherited virtual event can be overridden in a derived class by including an event declaration
that specifies an override modifier. This is known as an overriding event declaration. An overriding event

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 235

declaration does not declare a new event. Instead, it simply specializes the implementations of the accessors of
an existing virtual event.

An overriding event declaration must specify the exact same accessibility modifiers, type, and name as the
overridden event.

An overriding event declaration may include the sealed modifier. Use of this modifier prevents a derived class
from further overriding the event. The accessors of a sealed event are also sealed.

It is an error for an overriding event declaration to include a new modifier.

Except for differences in declaration and invocation syntax, virtual, override, and abstract accessors behave
exactly like a virtual, sealed, override and abstract methods. Specifically, the rules described i n −10.5.3, −10.5.4,
−10.5.5, and −10.5.6 apply as if accessors were methods of a corresponding form. Each accessor corresponds to
a method with a single value parameter of the event type, a void return type, and the same modifiers as the
containing event.

10.7.4 External events
When an event declaration includes an extern modifier, the event is said to be an external event. The extern
modifier is permitted only on event declarations that include event-accessor-declarations.

Like external methods (−10.5.7), external events are implemented externally, using a language other than C#.
Because an external event declaration provides no actual implementation, each of the event-accessor-
declarations of an event consists of a semicolon.

When an external event includes a DllImport attribute, the event declaration must also include a static
modifier.

10.8 Indexers
An indexer is a member that enables an object to be indexed in the same way as an array. Indexers are declared
using indexer-declarations:

indexer-declaration:
attributesopt indexer-modifiersopt indexer-declarator { accessor-declarations }

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
new

public

protected

internal

private

virtual

sealed

override

abstract

indexer-declarator:
type this [formal-parameter-list]
type interface-type . this [formal-parameter-list]

An indexer-declaration may include a set of attributes (−17), a new modifier (−10.2.2), a valid combination of
the four access modifiers (−10.2.3), and a valid combination of the virtual (−10.5.3), override (−10.5.4),

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

236 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

and abstract (−10.5.6) modifiers. In addition, an indexer that includes the override modifier may also
include the sealed modifier (−10.5.5).

The virtual, override, and abstract modifiers are mutually exclusive except in one case. The abstract
and override modifiers may be used together so that an abstract indexer can override a virtual one .

The type of an indexer declaration specifies the element type of the indexer introduced by the declaration.
Unless the indexer is an explicit interface member implementation, the type is followed by the keyword this.
For an explicit interface member implementation, the type is followed by an interface-type, a ” .„ , and the
keyword this. Unlike other members, indexers do not have user-defined names.

The formal-parameter-list specifies the parameters of the indexer. The formal parameter list of an indexer
corresponds to that of a method (−10.5.1), except that at least one parameter must be specified, and that the ref
and out parameter modifiers are not permitted.

The type of an indexer and each of the types referenced in the formal-parameter-list must be at least as
accessible as the indexer itself (−3.5.4).

The accessor-declarations (−10.6.2) which must be enclosed in ” {„ and ” }„ tokens, declare the accessors of the
indexer. The accessors specify the executable statements associated with reading and writing indexer elements.

Even though the syntax for accessing an indexer element is the same as that for an array element, an indexer
element is not classified as a variable. Thus, it is not possible to pass an indexer element as a ref or out
argument.

The formal parameter list of an indexer defines the signature (−3.6) of the indexer. Specifically, the signature of
an indexer consists of the number and types of its formal parameters. The element type and names of the formal
parameters are not part of an indexer§s signature.

The signature of an indexer must differ from the signatures of all other indexers declared in the same class.

Indexers and properties are very similar in concept, but differ in the following ways:

• A property is identified by its name, whereas an indexer is identified by its signature.

• A property is accessed through a simple-name (−7.5.2) or a member-access (−7.5.4), whereas an indexer
element is accessed through an element-access (−7.5.6.2).

• A property can be a static member, whereas an indexer is always an instance member.

• A get accessor of a property corresponds to a method with no parameters, whereas a get accessor of an
indexer corresponds to a method with the same formal parameter list as the indexer.

• A set accessor of a property corresponds to a method with a single parameter named value, whereas a
set accessor of an indexer corresponds to a method with the same formal parameter list as the indexer, plus
an additional parameter named value.

• It is an error for an indexer accessor to declare a local variable with the same name as an indexer param eter.

• In an overriding property declaration, the inherited property is accessed using the syntax base.P, where P
is the property name. In an overriding indexer declaration, the inherited indexer is accessed using the syntax
base[E], where E is a comma separated list of expressions.

With these differences in mind, all rules defined in −10.6.2 and −10.6.3 apply to indexer accessors as well as
property accessors.

The example below declares a BitArray class that implements an indexer for accessing the individual bits in
the bit array.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 237

class BitArray
{
 int[] bits;
 int length;

 public BitArray(int length) {
 if (length < 0) throw new ArgumentException();
 bits = new int[((length - 1) >> 5) + 1];
 this.length = length;
 }

 public int Length {
 get { return length; }
 }

 public bool this[int index] {
 get {
 if (index < 0 || index >= length) {
 throw new IndexOutOfRangeException();
 }
 return (bits[index >> 5] & 1 << index) != 0;
 }
 set {
 if (index < 0 || index >= length) {
 throw new IndexOutOfRangeException();
 }
 if (value) {
 bits[index >> 5] |= 1 << index;
 }
 else {
 bits[index >> 5] &= ~(1 << index);
 }
 }
 }
}

An instance of the BitArray class consumes substantially less memory than a corresponding bool[] (since
each value of the former occupies only one bit instead of the latter§s one byte), but it permits the same
operations as a bool[].

The following CountPrimes class uses a BitArray and the classical ” sieve„ algorithm to compute the number
of primes between 1 and a given maximum:

class CountPrimes
{
 static int Count(int max) {
 BitArray flags = new BitArray(max + 1);
 int count = 1;
 for (int i = 2; i <= max; i++) {
 if (!flags[i]) {
 for (int j = i * 2; j <= max; j += i) flags[j] = true;
 count++;
 }
 }
 return count;
 }

 static void Main(string[] args) {
 int max = int.Parse(args[0]);
 int count = Count(max);
 Console.WriteLine("Found {0} primes between 1 and {1}", count, max);
 }
}

Note that the syntax for accessing elements of the BitArray is precisely the same as for a bool[].

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

238 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The following example shows a 26 by 10 grid class that has an indexer with two parameters. The first parameter
is required to be an upper- or lowercase letter in the range A×Z, and the second is required to be an integer in the
range 0× 9.

class Grid
{
 const int NumRows = 26;
 const int NumCols = 10;

 int[,] cells = new int[NumRows, NumCols];

 public int this[char c, int colm] {
 get {
 c = Char.ToUpper(c);
 if (c < 'A' || c > 'Z')
 throw new ArgumentException();
 if (colm < 0 || colm >= NumCols)
 throw new IndexOutOfRangeException();
 return cells[c - 'A', colm];
 }

 set {
 c = Char.ToUpper(c);
 if (c < 'A' || c > 'Z')
 throw new ArgumentException();
 if (colm < 0 || colm >= NumCols)
 throw new IndexOutOfRangeException();
 cells[c - 'A', colm] = value;
 }
 }
}

10.8.1 Indexer overloading
The indexer overload resolution rules are described in −7.4.2.

10.9 Operators
An operator is a member that defines the meaning of an expression operator that can be applied to instances of
the class. Operators are declared using operator-declarations:

operator-declaration:
attributesopt operator-modifiers operator-declarator operator-body

operator-modifiers:
operator-modifier
operator-modifiers operator-modifier

operator-modifier:
public

static

extern

operator-declarator:
unary-operator-declarator
binary-operator-declarator
conversion-operator-declarator

unary-operator-declarator:
type operator overloadable-unary-operator (type identifier)

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 239

overloadable-unary-operator: one of
+ - ! ~ ++ -- true false

binary-operator-declarator:
type operator overloadable-binary-operator (type identifier , type identifier)

overloadable-binary-operator: one of
+ - * / % & | ^ << >> == != > < >= <=

conversion-operator-declarator:
implicit operator type (type identifier)
explicit operator type (type identifier)

operator-body:
block
;

There are three categories of overloadable operators: Unary operators (−10.9.1), binary operators (−10.9.2), and
conversion operators (−10.9.3).

The following rules apply to all operator declarations:

• An operator declaration must include both a public and a static modifier.

• When an operator declaration includes an extern modifier, the operator is said to be an external operator.
Because an external operator provides no actual implementation, the operator-body of an external operator
simply consists of a semi-colon.

• For external operators, the operator-body consists simply of a semicolon. For all other operators, the
operator-body consists of a block which specifies the statements to execute when the operator is invoked.
The block of an operator must conform to the rules for value-returning methods described in −10.5.8.

• The parameter(s) of an operator must be value parameters. It is an error for an operator declaration to
specify ref or out parameters.

• The signature of an operator (−10.9.1, −10.9.2, −10.9.3) must differ from the signatures of all other operators
declared in the same class.

• All types referenced in an operator declaration must be at least as accessible as the operator itself (−3.5.4).

Each operator category imposes additional restrictions, as described in the following sections.

Like other members, operators declared in a base class are inherited by derived classes. Because operator
declarations always require the class or struct in which the operator is declared to participate in the si gnature of
the operator, it is not possible for an operator declared in a derived class to hide an operator declared in a base
class. Thus, the new modifier is never required, and therefore never permitted, in an operator declaration.

Additional information on unary and binary operators can be found in −7.2.

Additional information on conversion operators can be found in −6.4.

10.9.1 Unary operators
The following rules apply to unary operator declarations, where T denotes the class or struct type that contains
the operator declaration:

• A unary +, -, !, or ~ operator must take a single parameter of type T and can return any type.

• A unary ++ or -- operator must take a single parameter of type T and must return type T.

• A unary true or false operator must take a single parameter of type T and must return type bool.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

240 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The signature of a unary operator consists of the operator token (+, -, !, ~, ++, --, true, or false) and the
type of the single formal parameter. The return type is not part of a unary operator§s signature, nor is the name
of the formal parameter.

The true and false unary operators require pair-wise declaration. An error occurs if a class declares one of
these operators without also declaring the other. The true and false operators are described further in −7.16.

The following example shows an implementation and subsequent usage of operator++ for an integer vector
class:

class IntVector
{
 public int Length { ... } // read-only property

 public int this[int index] { ... } // read-write indexer

 public IntVector(int vectorLength) { ... }

 public static IntVector operator++(IntVector iv) {
 IntVector temp = new IntVector(iv.Length);
 for (int i = 0; i < iv.Length; ++i)
 temp[i] = iv[i] + 1;
 return temp;
 }
}

class Test
{
 public static void Main() {
 IntVector iv1 = new IntVector(4); // vector of 4x0
 IntVector iv2;

 iv2 = iv1++; // iv2 contains 4x0, iv1 contains 4x1
 iv2 = ++iv1; // iv2 contains 4x2, iv1 contains 4x2
}

Note that the operator returns the value produced by adding 1 to the operand, just like the predefined version, as
stated in −14.5.9 and −14.6.5.

10.9.2 Binary operators
A binary operator must take two parameters, at least one of which must have the class or struct type in which the
operator is declared. A binary operator can return any type.

The signature of a binary operator consists of the operator token (+, -, *, /, %, &, |, ^, <<, >>, ==, !=, >, <, >=,
or <=) and the types of the two formal parameters. The return type and names of the formal parameters are not
part of a binary operator§s signature.

Certain binary operators require pair-wise declaration. For every declaration of either operator of a pair, there
must be a matching declaration of the other operator of the pair. Two operator declarations match when they
have the same return type and the same type for each parameter. The following operators require pair -wise
declaration:

• operator == and operator !=

• operator > and operator <

• operator >= and operator <=

10.9.3 Conversion operators
A conversion operator declaration introduces a user-defined conversion (−6.4) which augments the pre-defined
implicit and explicit conversions.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 241

A conversion operator declaration that includes the implicit keyword introduces a user-defined implicit
conversion. Implicit conversions can occur in a variety of situations, including function member invocations,
cast expressions, and assignments. This is described further in −6.1.

A conversion operator declaration that includes the explicit keyword introduces a user-defined explicit
conversion. Explicit conversions can occur in cast expressions, and are described further in −6.2.

A conversion operator converts from a source type, indicated by the parameter type of the conversion operator,
to a target type, indicated by the return type of the conversion operator. A class or struct is permitted to declare a
conversion from a source type S to a target type T provided all of the following are true:

• S and T are different types.

• Either S or T is the class or struct type in which the operator declaration takes place.

• Neither S nor T is object or an interface-type.

• T is not a base class of S, and S is not a base class of T.

From the second rule it follows that a conversion operator must convert either to or from the class or struct type
in which the operator is declared. For example, it is possible for a class or struct type C to define a conversion
from C to int and from int to C, but not from int to bool.

It is not possible to redefine a pre-defined conversion. Thus, conversion operators are not allowed to convert
from or to object because implicit and explicit conversions already exist between object and all other types.
Likewise, neither of the source and target types of a conversion can be a base type of the other, since a
conversion would then already exist.

User-defined conversions are not allowed to convert from or to interface-types. This restriction in particular
ensures that no user-defined transformations occur when converting to an interface-type, and that a conversion
to an interface-type succeeds only if the object being converted actually implements the specified interface-type.

The signature of a conversion operator consists of the source type and the target type. (Note that this is the only
form of member for which the return type participates in the signature.) The implicit or explicit
classification of a conversion operator is not part of the operator§s signature. Thus, a class or struct cannot
declare both an implicit and an explicit conversion operator with the same source and target types.

In general, user-defined implicit conversions should be designed to never throw exceptions and never lose
information. If a user-defined conversion can give rise to exceptions (for example, because the source argument
is out of range) or loss of information (such as discarding high-order bits), then that conversion should be
defined as an explicit conversion.

In the example
public struct Digit
{
 byte value;

 public Digit(byte value) {
 if (value < 0 || value > 9) throw new ArgumentException();
 this.value = value;
 }

 public static implicit operator byte(Digit d) {
 return d.value;
 }

 public static explicit operator Digit(byte b) {
 return new Digit(b);
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

242 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

the conversion from Digit to byte is implicit because it never throws exceptions or loses information, but the
conversion from byte to Digit is explicit since Digit can only represent a subset of the possible values of a
byte.

10.10 Instance constructors
An instance constructor is a member that implements the actions required to initialize an instance of a class.
Instance constructors are declared using constructor-declarations:

constructor-declaration:
attributesopt constructor-modifiersopt constructor-declarator constructor-body

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
public
protected

internal
private

extern

constructor-declarator:
identifier (formal-parameter-listopt) constructor-initializeropt

constructor-initializer:
: base (argument-listopt)
: this (argument-listopt)

constructor-body:
block
;

A constructor-declaration may include a set of attributes (−17), an extern modifier, and a valid combination
of the four access modifiers (−10.2.3).

The identifier of a constructor-declarator must name the class in which the constructor is declared. If any other
name is specified, an error occurs.

The optional formal-parameter-list of an instance constructor is subject to the same rules as the formal-
parameter-list of a method (−10.5). The formal parameter list defines the signature (−3.6) of an instance
constructor and governs the process whereby overload resolution (−7.4.2) selects a particular instance
constructor in an invocation.

Each of the types referenced in the formal-parameter-list of an instance constructor must be at least as
accessible as the constructor itself (−3.5.4).

The optional constructor-initializer specifies another instance constructor to invoke before executing the
statements given in the constructor-body of this instance constructor. This is described further in −10.10.1.

When a constructor declaration includes an extern modifier, the constructor is said to be an external
constructor. External constructors are implemented externally, using a language other than C#.

For external constructors, the constructor-body consists simply of a semicolon. For all other constructors, the
constructor-body consists of a block which specifies the statements to initialize a new instance of the class. This
corresponds exactly to the block of an instance method with a void return type (−10.5.8).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 243

Instance constructors are not inherited. Thus, a class has no instance constructors other t han those actually
declared in the class. If a class contains no instance constructor declarations, a default constructor is
automatically provided (−10.10.4).

Instance constructors are invoked by object-creation-expressions (−7.5.10.1) and through constructor-
initializers.

10.10.1 Constructor initializers
All instance constructors (except those for class object) implicitly include an invocation of another instance
constructor immediately before the constructor-body. The constructor to implicitly invoke is determined by the
constructor-initializer:

• A instance constructor initializer of the form base(argument-listopt) causes an instance constructor from
the direct base class to be invoked. The constructor is selected using the argument-list and overload
resolution rules of −7.4.2. The set of candidate instance constructors consists of all accessible instance
constructors declared in the direct base class. If the set is empty, or if a single best instance constructor
cannot be identified, an error occurs.

• An instance constructor initializer of the form this(argument-listopt) causes an instance constructor from
the class itself to be invoked. The constructor is selected using the argument-list and overload resolution
rules of −7.4.2. The set of candidate instance constructors consists of all accessible instance constructors
declared in the class itself. If the set is empty, or if a single best instance const ructor cannot be identified, an
error occurs. If an instance constructor declaration includes a constructor initializer that invokes the
constructor itself, an error occurs.

If an instance constructor has no instance constructor initializer, an instance co nstructor initializer of the form
base() is implicitly provided. Thus, an instance constructor declaration of the form

C(...) {...}

is equivalent to
C(...): base() {...}

The scope of the parameters given by the formal-parameter-list of an instance constructor declaration includes
the instance constructor initializer of that declaration. Thus, an instance constructor initializer is permitted to
access the parameters of the instance constructor. For example:

class A
{
 public A(int x, int y) {}
}

class B: A
{
 public B(int x, int y): base(x + y, x - y) {}
}

An instance constructor initializer cannot access the instance being created. It is therefore an error to reference
this in an argument expression of the instance constructor initializer, as it is an error for an argument
expression to reference any instance member through a simple-name.

10.10.2 Instance variable initializers
When an instance constructor has no instance constructor initializer, or when it has an instance constructor
initializer of the form base(...), it implicitly performs the initializations specified by the variable-initializers
of the instance fields declared in the class. This corresponds to a sequence of assignments that are executed
immediately upon entry to the instance constructor and before the implicit invocation of the direct base class

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

244 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

instance constructor. The variable initializers are executed in the textual order in which they appear in the class
declaration.

10.10.3 Constructor execution
Variable initializers are transformed into assignment st atements, and these assignment statements are executed
before the invocation of the base class instance constructor. This ordering ensures that all instance fields are
initialized by their variable initializers before any statements that have access to tha t instance are executed.

In the example
class A
{
 public A() {
 PrintFields();
 }

 public virtual void PrintFields() {}

}

class B: A
{
 int x = 1;
 int y;

 public B() {
 y = -1;
 }

 public override void PrintFields() {
 Console.WriteLine("x = {0}, y = {1}", x, y);
 }
}

class T
{
 static void Main() {
 B b = new B();
 }
}

the following output is produced:
x = 1, y = 0

The value of x is 1 because the variable initializer is executed before the base class instance constructor is
invoked. However, the value of y is 0 (the default value of an int) because the assignment to y is not executed
until after the base class constructor returns.

It is useful to think of instance variable initializers and constructor initializers as statements that are
automatically inserted before the constructor-body of an instance constructor. The example

using System.Collections;

class A
{
 int x = 1, y = -1, count;

 public A() {
 count = 0;
 }

 public A(int n) {
 count = n;
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 245

class B: A
{
 double sqrt2 = Math.Sqrt(2.0);
 ArrayList items = new ArrayList(100);
 int max;

 public B(): this(100) {
 items.Add("default");
 }

 public B(int n): base(n “ 1) {
 max = n;
 }
}

contains several variable initializers and also contains constructor initializers of both forms (base and this).
The example corresponds to the code shown below, where each comment indicates an automatically inserted
statement (the syntax used for the automatically inserted constructor invocations isn §t valid, but merely serves to
illustrate the mechanism).

using System.Collections;

class A
{
 int x, y, count;

 public A() {
 x = 1; // Variable initializer
 y = -1; // Variable initializer
 object(); // Invoke object() constructor
 count = 0;
 }

 public A(int n) {
 x = 1; // Variable initializer
 y = -1; // Variable initializer
 object(); // Invoke object() constructor
 count = n;
 }
}

class B: A
{
 double sqrt2;
 ArrayList items;
 int max;

 public B(): this(100) {
 B(100); // Invoke B(int) constructor
 items.Add("default");
 }

 public B(int n): base(n “ 1) {
 sqrt2 = Math.Sqrt(2.0); // Variable initializer
 items = new ArrayList(100); // Variable initializer
 A(n “ 1); // Invoke A(int) constructor
 max = n;
 }
}

10.10.4 Default constructors
If a class contains no instance constructor declarations, a default instance constructor is automatically provided.
The default constructor simply invokes the parameterless constructor of the direct base class. If the direct base
class does not have an accessible parameterless instance constructor, an error occurs. If the class is abstract then

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

246 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

the declared accessibility for the default constructor is protected. Otherwise, the declared accessibility for the
default constructor is public. Thus, the default constructor is always of the form

protected C(): base() {}

or
public C(): base() {}

where C is the name of the class.

In the example
class Message
{
 object sender;
 string text;
}

a default constructor is provided because the class contains no instance constructor declarat ions. Thus, the
example is precisely equivalent to

class Message
{
 object sender;
 string text;

 public Message(): base() {}
}

10.10.5 Private constructors
When a class declares only private instance constructors, it is not possible for other classes to derive fr om the
class or create instances of the class (an exception being classes nested within the class). Private instance
constructors are commonly used in classes that contain only static members. For example:

public class Trig
{
 private Trig() {} // Prevent instantiation

 public const double PI = 3.14159265358979323846;

 public static double Sin(double x) {...}
 public static double Cos(double x) {...}
 public static double Tan(double x) {...}
}

The Trig class groups related methods and constants, but is not intended to be instantiated. Therefore it
declares a single empty private instance constructor. At least one instance constructor must be declared to
suppress the automatic generation of a default constructor.

10.10.6 Optional instance constructor parameters
The this(...) form of an instance constructor initializer is commonly used in conjunction with overloading
to implement optional instance constructor parameters. In the example

class Text
{
 public Text(): this(0, 0, null) {}

 public Text(int x, int y): this(x, y, null) {}

 public Text(int x, int y, string s) {
 // Actual constructor implementation
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 247

the first two instance constructors merely provide the default values for the missing arguments. Both use a
this(...) constructor initializer to invoke the third instance constructor, which actually does the work of
initializing the new instance. The effect is that of optional instance constructor parameters:

Text t1 = new Text(); // Same as Text(0, 0, null)
Text t2 = new Text(5, 10); // Same as Text(5, 10, null)
Text t3 = new Text(5, 20, "Hello");

10.11 Static constructors
A static constructor is a member that implements the actions required to initialize a class. Static constructors are
declared using static-constructor-declarations:

static-constructor-declaration:
attributesopt static identifier () block

A static-constructor-declaration may include a set of attributes (−17).

The identifier of a static-constructor-declaration must name the class in which the static constructor is declared.
If any other name is specified, an error occurs.

The block of a static constructor declaration specifies the statements to be executed in order to initialize the
class. This corresponds exactly to the block of a static method with a void return type (−10.5.8).

Static constructors are not inherited, and cannot be called directly.

The exact timing of static constructor execution is implementation -dependent, but is subject to the following
rules:

• The static constructor executes before any instance of the class is created.

• The static constructor executes before any of the static members for the class are referenced.

• The static constructor executes after the static field initializers (if any) for the class.

• The static constructor executes at most one time during a single execution of a program.

The example
class Test
{
 static void Main() {
 A.F();
 B.F();
 }
}

class A
{
 static A() {
 Console.WriteLine("Init A");
 }

 public static void F() {
 Console.WriteLine("A.F");
 }
}

class B
{
 static B() {
 Console.WriteLine("Init B");
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

248 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 public static void F() {
 Console.WriteLine("B.F");
 }
}

could produce either the output:
Init A
A.F
Init B
B.F

or the output:
Init B
Init A
A.F
B.F

because the exact ordering of static constructor execution is not defined.

10.12 Destructors
A destructor is a member that implements the actions required to destruct an instance of a class. A destructors is
declared using a destructor-declaration:

destructor-declaration:
attributesopt ~ identifier () block

A destructor-declaration may include a set of attributes (−17).

The identifier of a destructor-declarator must name the class in which the destructor is declared. If any other
name is specified, an error occurs.

The block of a destructor declaration specifies the statements to be executed in order to destruct an instance of
the class. This corresponds exactly to the block of an instance method with a void return type (−10.5.8).

Destructors are not inherited. Thus, a class has no destructors other than the one which may be declared in it.

Since a destructor is required to have no parameters, it cannot be overloaded. Thus, a class can have, at most,
one destructor.

Destructors are invoked automatically, and cannot be invoked explicitly. An instance becomes eligible for
destruction when it is no longer possible for any code to use the instance. Execution of the destructor for the
instance may occur at any time after the instance becomes eligible for destruction. When an instance is
destructed, the destructors in its inheritance chain are called, in order, from most derived to least derived.

Issue

Describe what happens when an exception is thrown from a destructor.

The output of the example
class A
{
 ~A() {
 Console.WriteLine("A's destructor");
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 10 Classes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 249

class B: A
{
 ~B() {
 Console.WriteLine("B's destructor");
 }
}

public class Test
{
 public static void Main() {
 B b = new B();
 b = null;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
}

is
B–s destructor
A–s destructor

since destructors in an inheritance chain are called in order, from most derived to least derived.

Implementation note

In CLR, destructors are implemented by overriding the virtual method Finalize on Syste m.Object. C# programs are not
permitted to override this method or call it (or overrides of it) directly. For instance, the program
 class A
 {
 override protected void Finalize() {} // error

 public void F() {
 this.Finalize(); // error
 }
 }

contains two errors.

The compiler behaves as if this method, and overrides of it, do not exist at all. Thus, this progam:
 class A
 {
 void Finalize() {} // legal
 }

is valid, and the method shown hides System.Object „s Finalize method.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 11 Structs

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 251

11. Structs

Structs are similar to classes in that they represent data structures that can contain data members and function
members. Unlike classes, structs are value types and do not require heap allocation. A variable of a struct type
directly contains the data of the struct, whereas a variable of a class type contains a reference to the data, the
latter known as an object.

Structs are particularly useful for small data structures that have value semantics. Complex numbers, points in a
coordinate system, or key-value pairs in a dictionary are all good examples of structs. Key to these data
structures is that they have few data members, that they do not require use of inheritance or referential identity,
and that they can be conveniently implemented using value semantics where assignment copies the value instead
of the reference.

As described in −4.1.3, the simple types provided by C#, such as int, double, and bool, are in fact all struct
types. Just as these predefined types are structs, so i t is possible to use structs and operator overloading to
implement new ” primitive„ types in the C# language. Two examples of such types are given in at the end of this
chapter (−11.4).

11.1 Struct declarations
A struct-declaration is a type-declaration (−9.5) that declares a new struct:

struct-declaration:
attributesopt struct-modifiersopt struct identifier struct-interfacesopt struct-body ;opt

A struct-declaration consists of an optional set of attributes (−17), followed by an optional set of struct-
modifiers (−11.1.1), followed by the keyword struct and an identifier that names the struct, followed by an
optional struct-interfaces specification (−11.1.2), followed by a struct-body (−11.1.3), optionally followed by a
semicolon.

11.1.1 Struct modifiers
A struct-declaration may optionally include a sequence of struct modifiers:

struct-modifiers:
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
new
public

protected

internal
private

It is an error for the same modifier to appear multiple times in a struct declaration.

The modifiers of a struct declaration have the same meaning as those of a class declaration (−10.1.1).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

252 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

11.1.2 Struct interfaces
A struct declaration may include a struct-interfaces specification, in which case the struct is said to implement
the given interface types.

struct-interfaces:
: interface-type-list

Interface implementations are discussed further in −13.4.

11.1.3 Struct body
The struct-body of a struct defines the members of the struct.

struct-body:
{ struct-member-declarationsopt }

11.2 Struct members
The members of a struct consist of the members introduced by its struct-member-declarations and the members
inherited from System.ValueType, which, in turn, inherits from object.

struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
static-constructor-declaration
type-declaration

Except for the differences noted in −11.3, the descriptions of class members provided in −10.2 through −10.11
apply to struct members as well.

11.3 Class and struct differences

11.3.1 Value semantics
Structs are value types (−4.1) and are said to have value semantics. Classes, on the other hand, are reference
types (−4.2) and are said to have reference semantics.

A variable of a struct type directly contains the data of the struct, whereas a variable of a class type contains a
reference to the data, the latter known as an object.

With classes, it is possible for two variables to reference the same object, and thus possib le for operations on
one variable to affect the object referenced by the other variable. With structs, the variables each have their own
copy of the data, and it is not possible for operations on one to affect the other. Furthermore, because structs are
not reference types, it is not possible for values of a struct type to be null.

Given the declaration

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 11 Structs

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 253

struct Point
{
 public int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

the code fragment
Point a = new Point(10, 10);
Point b = a;
a.x = 100;
Console.WriteLine(b.x);

outputs the value 10. The assignment of a to b creates a copy of the value, and b is thus unaffected by the
assignment to a.x. Had Point instead been declared as a class, the output would be 100 because a and b
would reference the same object.

11.3.2 Inheritance
All struct types implicitly inherit from class object. A struct declaration may specify a list of implemented
interfaces, but it is not possible for a struct declaration to specify a base class.

Struct types are never abstract and are always implicitly sealed. The abstract and sealed modifiers are
therefore not permitted in a struct declaration.

Since inheritance isn§t supported for structs, the declared accessibility of a struct member cannot be protected
or protected internal.

Function members in a struct cannot be abstract or virtual, and the override modifier is allowed only to
override methods inherited from the object type.

11.3.3 Assignment
Assignment to a variable of a struct type creates a copy of the value being assigned. This differs from
assignment to a variable of a class type, which copies the reference but not the object identified by the reference.

Similar to an assignment, when a struct is passed as a value parameter or returned as the result of a function
member, a copy of the struct is created. A struct may be passed by reference to a function member using a ref
or out parameter.

When a property or indexer of a struct is the target of an assignment, the instance expression associated with the
property or indexer access must be classified as a variable. If the instance expression is classified as a value, a
compile-time error occurs. This is described in further detail in −7.13.1.

11.3.4 Default values
As described in −5.2, several kinds of variables are automatically initialized to their default value when they are
created. For variables of class types and other reference types, this default value is null. However, since structs
are value types that cannot be null, the default value of a struct is the value produced by setting all value type
fields to their default value and all reference type fields to null.

Referring to the Point struct declared above, the example
Point[] arr = new Point[100];

initializes each Point in the array to the value produced by setting the x and y fields to zero.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

254 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The default value of a struct corresponds to the value returned by the default constructor of the struct (−4.1.1).
Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead, every struct
implicitly has a parameterless instance constructor which always returns the value that results from ” zeroing
out„ the fields of the struct.

Structs should be designed to consider the default initialization state a valid state. In the example
struct KeyValuePair
{
 string key;
 string value;

 public KeyValuePair(string key, string value) {
 if (key == null || value == null) throw new ArgumentException();
 this.key = key;
 this.value = value;
 }
}

the user-defined instance constructor protects against null values only where it is explicitly called. In cases
where a KeyValuePair variable is subject to default value initialization, the key and value fields will be null,
and the struct must be prepared to handle this state.

11.3.5 Boxing and unboxing
A value of a class type can be converted to type object or to an interface type that is implemented by the class
simply by treating the reference as another type at compile-time. Likewise, a value of type object or a value of
an interface type can be converted back to a class type without changing the reference (but of course a run -time
type check is required in this case).

Since structs are not reference types, these operations are implemented d ifferently for struct types. When a value
of a struct type is converted to type object or to an interface type that is implemented by the struct, a boxing
operation takes place. Likewise, when a value of type object or a value of an interface type is converted back
to a struct type, an unboxing operation takes place. A key difference from the same operations on class types is
that boxing and unboxing copies the struct value either into or out of the boxed instance. Thus, following a
boxing or unboxing operation, changes made to the unboxed struct are not reflected in the boxed struct.

For further details on boxing and unboxing, see −4.3.

11.3.6 Meaning of this
Within an instance constructor or instance function member of a class, this is classified as a value. Thus, while
this can be used to refer to the instance for which the function member was invoked, it is not possible to assign
to this in a function member of a class.

Within an instance constructor of a struct, this corresponds to an out parameter of the struct type, and within
an instance function member of a struct, this corresponds to a ref parameter of the struct type. In both cases,
this is classified as a variable, and it is possible to modify the entire struct for which the f unction member was
invoked by assigning to this or by passing this as a ref or out parameter.

11.3.7 Field initializers
As described in −11.3.4, the default value of a struct consists of the value that results from setting all value t ype
fields to their default value and all reference type fields to null.. For this reason, a struct does not permit
instance field declarations to include variable initializers, and the following example is invalid:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 11 Structs

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 255

struct Point
{
 public int x = 1; // Error, initializer not permitted
 public int y = 1; // Error, initializer not permitted
}

This restriction applies only to instance fields. Static fields of a struct are permitted to include variable
initializers.

11.3.8 Constructors
Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead, every struct
implicitly has a parameterless instance constructor which always returns the value that results from setting all
value type fields to their default value and all reference type fields to null (−4.1.1).

A struct instance constructor is not permitted to include a constructor initializer of the form base(...).

The this variable of a struct instance constructor corresponds to an out parameter of the struct type, and
similar to an out parameter, this must be definitely assigned (−5.3) at every location where the instance
constructor returns.

A struct can declare instance constructors having parameters. In the example
struct Point
{
 int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

the struct Point declares a instance constructor with two int parameters. Given this declaration, the statements
Point p1 = new Point();

Point p2 = new Point(0, 0);

both create a Point with x and y initialized to zero.

11.3.9 Destructors
A struct is not permitted to declare a destructor.

11.4 Struct examples

11.4.1 Database integer type
The DBInt struct below implements an integer type that can represent the complete set of values of the int
type, plus an additional state that indicates an unknown value. A type with these characteristics is commonly
used in databases.

public struct DBInt
{
 // The Null member represents an unknown DBInt value.

 public static readonly DBInt Null = new DBInt();

 // When the defined field is true, this DBInt represents a known value
 // which is stored in the value field. When the defined field is false,
 // this DBInt represents an unknown value, and the value field is 0.

 int value;
 bool defined;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

256 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 // Private instance constructor. Creates a DBInt with a known value.

 DBInt(int value) {
 this.value = value;
 this.defined = true;
 }

 // The IsNull property is true if this DBInt represents an unknown value.

 public bool IsNull { get { return !defined; } }

 // The Value property is the known value of this DBInt, or 0 if this
 // DBInt represents an unknown value.

 public int Value { get { return value; } }

 // Implicit conversion from int to DBInt.

 public static implicit operator DBInt(int x) {
 return new DBInt(x);
 }

 // Explicit conversion from DBInt to int. Throws an exception if the
 // given DBInt represents an unknown value.

 public static explicit operator int(DBInt x) {
 if (!x.defined) throw new InvalidOperationException();
 return x.value;
 }

 public static DBInt operator +(DBInt x) {
 return x;
 }

 public static DBInt operator -(DBInt x) {
 return x.defined? -x.value: Null;
 }

 public static DBInt operator +(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value + y.value: Null;
 }

 public static DBInt operator -(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value - y.value: Null;
 }

 public static DBInt operator *(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value * y.value: Null;
 }

 public static DBInt operator /(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value / y.value: Null;
 }

 public static DBInt operator %(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value % y.value: Null;
 }

 public static DBBool operator ==(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value == y.value: DBBool.Null;
 }

 public static DBBool operator !=(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value != y.value: DBBool.Null;
 }

 public static DBBool operator >(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value > y.value: DBBool.Null;
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 11 Structs

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 257

 public static DBBool operator <(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value < y.value: DBBool.Null;
 }

 public static DBBool operator >=(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value >= y.value: DBBool.Null;
 }

 public static DBBool operator <=(DBInt x, DBInt y) {
 return x.defined && y.defined? x.value <= y.value: DBBool.Null;
 }

 public override bool Equals(object o) {
 try {
 return (bool) (this == (DBInt) o);
 }
 catch {
 return false;
 }
 }

 public override int GetHashCode() {
 if (defined)
 return value;
 else
 return 0;
 }

 public override string ToString() {
 if (defined)
 return value.ToString();
 else
 return "DBInt.Null";
 }}

11.4.2 Database boolean type
The DBBool struct below implements a three-valued logical type. The possible values of this type are
DBBool.True, DBBool.False, and DBBool.Null, where the Null member indicates an unknown value.
Such three-valued logical types are commonly used in databases.

public struct DBBool
{
 // The three possible DBBool values.

 public static readonly DBBool Null = new DBBool(0);
 public static readonly DBBool False = new DBBool(-1);
 public static readonly DBBool True = new DBBool(1);

 // Private field that stores “1, 0, 1 for False, Null, True.

 sbyte value;

 // Private instance constructor. The value parameter must be “1, 0, or 1.

 DBBool(int value) {
 this.value = (sbyte)value;
 }

 // Properties to examine the value of a DBBool. Return true if this
 // DBBool has the given value, false otherwise.

 public bool IsNull { get { return value == 0; } }

 public bool IsFalse { get { return value < 0; } }

 public bool IsTrue { get { return value > 0; } }

 // Implicit conversion from bool to DBBool. Maps true to DBBool.True and
 // false to DBBool.False.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

258 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 public static implicit operator DBBool(bool x) {
 return x? True: False;
 }

 // Explicit conversion from DBBool to bool. Throws an exception if the
 // given DBBool is Null, otherwise returns true or false.

 public static explicit operator bool(DBBool x) {
 if (x.value == 0) throw new InvalidOperationException();
 return x.value > 0;
 }

 // Equality operator. Returns Null if either operand is Null, otherwise
 // returns True or False.

 public static DBBool operator ==(DBBool x, DBBool y) {
 if (x.value == 0 || y.value == 0) return Null;
 return x.value == y.value? True: False;
 }

 // Inequality operator. Returns Null if either operand is Null, otherwise
 // returns True or False.

 public static DBBool operator !=(DBBool x, DBBool y) {
 if (x.value == 0 || y.value == 0) return Null;
 return x.value != y.value? True: False;
 }

 // Logical negation operator. Returns True if the operand is False, Null
 // if the operand is Null, or False if the operand is True.

 public static DBBool operator !(DBBool x) {
 return new DBBool(-x.value);
 }

 // Logical AND operator. Returns False if either operand is False,
 // otherwise Null if either operand is Null, otherwise True.

 public static DBBool operator &(DBBool x, DBBool y) {
 return new DBBool(x.value < y.value? x.value: y.value);
 }

 // Logical OR operator. Returns True if either operand is True, otherwise
 // Null if either operand is Null, otherwise False.

 public static DBBool operator |(DBBool x, DBBool y) {
 return new DBBool(x.value > y.value? x.value: y.value);
 }

 // Definitely true operator. Returns true if the operand is True, false
 // otherwise.

 public static bool operator true(DBBool x) {
 return x.value > 0;
 }

 // Definitely false operator. Returns true if the operand is False, false
 // otherwise.

 public static bool operator false(DBBool x) {
 return x.value < 0;
 }

 public override bool Equals(object o) {
 try {
 return (bool) (this == (DBBool) o);
 }
 catch {
 return false;
 }
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 11 Structs

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 259

 public override int GetHashCode() {
 return value;
 }

 public override string ToString() {
 switch (value) {
 case -1:
 return "DBBool.False";
 case 0:
 return "DBBool.Null";
 case 1:
 return "DBBool.True";
 default:
 throw new InvalidOperationException();
 }
 }}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 12 Arrays

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 261

12. Arrays

An array is a data structure that contains a number of variables which are accessed through computed indices.
The variables contained in an array, also called the elements of the array, are all of the same type, and this type
is called the element type of the array.

An array has a rank which determines the number of indices associated with each array element. The rank of an
array is also referred to as the dimensions of the array. An array with a rank of one is called a single-
dimensional array, and an array with a rank greater than one is called a multi-dimensional array. Multi-
dimensional arrays of specific sizes are often referred to by size, as two-dimensional arrays, three-dimensional
arrays, and so on.

Each dimension of an array has an associated length which is an integral number greater than or equal to zero.
The dimension lengths are not part of the type of the array, but rather are established when an instance of the
array type is created at run-time. The length of a dimension determines the valid range of indices for that
dimension: For a dimension of length N, indices can range from 0 to N “ 1 inclusive. The total number of
elements in an array is the product of the lengths of each dimension in the array. If one or more of the
dimensions of an array have a length of zero, the array is said to be empty.

The element type of an array can be any type, including an array type.

12.1 Array types
An array type is written as a non-array-type followed by one or more rank-specifiers:

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsopt]

dim-separators:
,
dim-separators ,

A non-array-type is any type that is not itself an array-type.

The rank of an array type is given by the leftmost rank-specifier in the array-type: A rank-specifier indicates
that the array is an array with a rank of one plus the number of ” ,„ tokens in the rank-specifier.

The element type of an array type is the type that results from deleting the leftmost rank-specifier:

• An array type of the form T[R] is an array with rank R and a non-array element type T.

• An array type of the form T[R][R1]...[RN] is an array with rank R and an element type T[R1]...[RN].

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

262 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

In effect, the rank-specifiers are read from left to right before the final non-array element type. For example, the
type int[][,,][,] is a single-dimensional array of three-dimensional arrays of two-dimensional arrays of
int.

At run-time, a value of an array type can be null or a reference to an instance of that array type.

12.1.1 The System.Array type
The System.Array type is the abstract base type of all array types. An implicit reference conversion (−6.1.4)
exists from any array type to System.Array, and an explicit reference conversion (−6.2.3) exists from
System.Array to any array type. Note that System.Array itself is not an array-type. Rather, it is a class-type
from which all array-types are derived.

At run-time, a value of type System.Array can be null or a reference to an instance of any array type.

12.2 Array creation
Array instances are created by array-creation-expressions (−7.5.10.2) or by field or local variable declarations
that include an array-initializer (−12.6).

When an array instance is created, the rank and length of each dimension are established and then remain
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an existing
array instance, nor is it possible to resize its dimensions.

An array instance is always of an array type. The System.Array type is an abstract type that cannot be
instantiated.

Elements of arrays created by array-creation-expressions are always initialized to their default value (−5.2).

12.3 Array element access
Array elements are accessed using element-access expressions (−7.5.6.1) of the form A[I1, I2, ..., IN],
where A is an expression of an array type and each IX is an expression of type int, uint, long, ulong, or of a
type that can be implicitly converted to one or more of these types.. The result of an array element access is a
variable, namely the array element selected by the indices.

The elements of an array can be enumerated using a foreach statement (−8.8.4).

12.4 Array members
Every array type inherits the members declared by the System.Array type.

12.5 Array covariance
For any two reference-types A and B, if an implicit reference conversion (−6.1.4) or explicit reference conversion
(−6.2.3) exists from A to B, then the same reference conversion also exists from the array type A[R] to the array
type B[R], where R is any given rank-specifier (but the same for both array types). This relationship is known as
array covariance. Array covariance in particular means that a value of an array type A[R] may actually be a
reference to an instance of an array type B[R], provided an implicit reference conversion exists from B to A.

Because of array covariance, assignments to elements of reference type arrays include a run -time check which
ensures that the value being assigned to the array element is actually of a permitted type (−7.13.1). For example:

class Test
{
 static void Fill(object[] array, int index, int count, object value) {
 for (int i = index; i < index + count; i++) array[i] = value;
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 12 Arrays

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 263

 static void Main() {
 string[] strings = new string[100];
 Fill(strings, 0, 100, "Undefined");
 Fill(strings, 0, 10, null);
 Fill(strings, 90, 10, 0);
 }
}

The assignment to array[i] in the Fill method implicitly includes a run-time check which ensures that the
object referenced by value is either null or an instance of a type that is compatible with the actual element
type of array. In Main, the first two invocations of Fill succeed, but the third invocation causes a
System.ArrayTypeMismatchException to be thrown upon executing the first assignment to array[i].
The exception occurs because a boxed int cannot be stored in a string array.

Array covariance specifically does not extend to arrays of value-types. For example, no conversion exists that
permits an int[] to be treated as an object[].

12.6 Array initializers
Array initializers may be specified in field declarations (−10.4), local variable declarations (−8.5.1), and array
creation expressions (−7.5.10.2):

array-initializer:
{ variable-initializer-listopt }
{ variable-initializer-list , }

variable-initializer-list:
variable-initializer
variable-initializer-list , variable-initializer

variable-initializer:
expression
array-initializer

An array initializer consists of a sequence of variable initializers, enclosed by ” {„and ” }„ tokens and separated
by ” ,„ tokens. Each variable initializer is an expression or, in the case of a multi -dimensional array, a nested
array initializer.

The context in which an array initializer is used determines the type of the array being initialized. In an array
creation expression, the array type immediately precedes the initializer. In a field or variable declaration, the
array type is the type of the field or variable being declared. When an array initializer is used in a field or
variable declaration, such as:

int[] arr = {0, 2, 4, 6, 8};

it is simply shorthand for an equivalent array creation expression:
int[] arr = new int[] {0, 2, 4, 6, 8}

For a single-dimensional array, the array initializer must consist of a sequence of expressions that are
assignment compatible with the element type of the array. The expressions initialize array elements in increasing
order, starting with the element at index zero. The number of expressions in the array initializer determines the
length of the array instance being created. For example, the array initializer above creates an int[] instance of
length 5 and then initializes the instance with the following values:

a[0] = 0; a[1] = 2; a[2] = 4; a[3] = 6; a[4] = 8;

For a multi-dimensional array, the array initializer must have as many levels of nesting as there are dimensions
in the array. The outermost nesting level corresponds to the leftmost dimension and the innermost nesting level
corresponds to the rightmost dimension. The length of each dimension of the array is determined by the number

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

264 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

of elements at the corresponding nesting level in the array initializer. For each nested array initializer, the
number of elements must be the same as the other array initializers at the same level. The example:

int[,] b = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}};

creates a two-dimensional array with a length of five for the leftmost dimension and a length of two for the
rightmost dimension:

int[,] b = new int[5, 2];

and then initializes the array instance with the following values:
b[0, 0] = 0; b[0, 1] = 1;
b[1, 0] = 2; b[1, 1] = 3;
b[2, 0] = 4; b[2, 1] = 5;
b[3, 0] = 6; b[3, 1] = 7;
b[4, 0] = 8; b[4, 1] = 9;

When an array creation expression includes both explicit dimension lengths and an array initializer, the lengths
must be constant expressions and the number of elements at each nesting level must match the corresponding
dimension length. Some examples:

int i = 3;
int[] x = new int[3] {0, 1, 2}; // OK
int[] y = new int[i] {0, 1, 2}; // Error, i not a constant
int[] z = new int[3] {0, 1, 2, 3}; // Error, length/initializer mismatch

Here, the initializer for y is in error because the dimension length expression is not a constant, and the initializer
for z is in error because the length and the number of elements in the initializer do not agree.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 13 Interfaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 265

13. Interfaces

An interface defines a contract. A class or struct that implements an interface must adhere to its contract. An
interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.

Interfaces can contain methods, properties, events, and indexers. The interface itself does not provide
implementations for the members that it defines. The interface merely specifies the members that must be
supplied by classes or interfaces that implement the interface.

13.1 Interface declarations
An interface-declaration is a type-declaration (−9.5) that declares a new interface type.

interface-declaration:
attributesopt interface-modifiersopt interface identifier interface-baseopt interface-body ;opt

An interface-declaration consists of an optional set of attributes (−17), followed by an optional set of interface-
modifiers (−13.1.1), followed by the keyword interface and an identifier that names the interface, optionally
followed by an optional interface-base specification (−13.1.2), followed by a interface-body (−13.1.3),
optionally followed by a semicolon.

13.1.1 Interface modifiers
An interface-declaration may optionally include a sequence of interface modifiers:

interface-modifiers:
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
new
public

protected

internal
private

It is an error for the same modifier to appear multiple times in an interface declaration.

The new modifier is only permitted on nested interfaces. It specifies that the inter face hides an inherited member
by the same name, as described in −10.2.2.

The public, protected, internal, and private modifiers control the accessibility of the interface.
Depending on the context in which the interface declaration occurs, only some of these modifiers may be
permitted (−3.5.1).

13.1.2 Base interfaces
An interface can inherit from zero or more interfaces, which are called the explicit base interfaces of the
interface. When an interface has more than zero explicit base interfaces, then in the declaration of the interface,
the interface identifier is followed by a colon and a comma separated list of base interface identifiers.

interface-base:
: interface-type-list

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

266 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

The explicit base interfaces of an interface must be at least as accessible as the interface itself (−3.5.4). For
example, it is an error to specify a private or internal interface in the interface-base of a public interface.

It is an error for an interface to directly or indirectly inherit from itself.

The base interfaces of an interface are the explicit base interfaces and their base interfaces. In other words, the
set of base interfaces is the complete transitive closure of the explicit base interfaces , their explicit base
interfaces, and so on. An interface inherits all members of its base interfaces. In the example

interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

interface IListBox: IControl
{
 void SetItems(string[] items);
}

interface IComboBox: ITextBox, IListBox {}

the base interfaces of IComboBox are IControl, ITextBox, and IListBox.

In other words, the IComboBox interface above inherits members SetText and SetItems as well as Paint.

A class or struct that implements an interface also implicitly implements all of the interface §s base interfaces.

13.1.3 Interface body
The interface-body of an interface defines the members of the interface.

interface-body:
{ interface-member-declarationsopt }

13.2 Interface members
The members of an interface are the members inherited from the base interfaces and the members declared by
the interface itself.

interface-member-declarations:
interface-member-declaration
interface-member-declarations interface-member-declaration

interface-member-declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

An interface declaration may declare zero or more members. The members of an interface must be methods,
properties, events, or indexers. An interface cannot contain constants, fields, operators, instance constructors,
destructors, or types, nor can an interface contain static members of any kind.

All interface members implicitly have public access. It is an error for interface member declarations to include
any modifiers. In particular, it is an error for an interface member to include any of the following modifiers:
abstract, public, protected, internal, private, virtual, override, or static.

The example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 13 Interfaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 267

public delegate void StringListEvent(IStringList sender);

public interface IStringList
{
 void Add(string s);

 int Count { get; }

 event StringListEvent Changed;

 string this[int index] { get; set; }
}

declares an interface that contains one each of the possible kinds of members: A method, a property, an event,
and an indexer.

An interface-declaration creates a new declaration space (−3.3), and the interface-member-declarations
immediately contained by the interface-declaration introduce new members into this declaration space. The
following rules apply to interface-member-declarations:

• The name of a method must differ from the names of all properties and events declared in the same
interface. In addition, the signature (−3.6) of a method must differ from the signatures of all other methods
declared in the same interface.

• The name of a property or event must differ from the names of all other members declared in the same
interface.

• The signature of an indexer must differ from the signatures of all other indexers declared in the same
interface.

The inherited members of an interface are specifically not part of the declaration space of the interface. Thus, an
interface is allowed to declare a member with the same name or signature as an inherited member. When this
occurs, the derived interface member is said to hide the base interface member. Hiding an inherited member is
not considered an error, but it does cause the compiler to issue a warning. To suppress the warning, the
declaration of the derived interface member must include a new modifier to indicate that the derived member is
intended to hide the base member. This topic is discussed further in −3.7.1.2.

If a new modifier is included in a declaration that doesn§t hide an inherited member, a warning is issued to that
effect. This warning is suppressed by removing the new modifier.

13.2.1 Interface methods
Interface methods are declared using interface-method-declarations:

interface-method-declaration:
attributesopt newopt return-type identifier (formal-parameter-listopt) ;

The attributes, return-type, identifier, and formal-parameter-list of an interface method declaration have the
same meaning as those of a method declaration in a class (−10.5). An interface method declaration is not
permitted to specify a method body, and the declaration therefore always ends with a semicolon.

13.2.2 Interface properties
Interface properties are declared using interface-property-declarations:

interface-property-declaration:
attributesopt newopt type identifier { interface-accessors }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

268 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

interface-accessors:
attributesopt get ;
attributesopt set ;
attributesopt get ; attributesopt set ;
attributesopt set ; attributesopt get ;

The attributes, type, and identifier of an interface property declaration have the same meaning as those of a
property declaration in a class (−10.6).

The accessors of an interface property declaration correspond to the accessors of a class property declaration
(−10.6.2), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate
whether the property is read-write, read-only, or write-only.

13.2.3 Interface events
Interface events are declared using interface-event-declarations:

interface-event-declaration:
attributesopt newopt event type identifier ;

The attributes, type, and identifier of an interface event declaration have the same meaning as those of an event
declaration in a class (−10.7).

13.2.4 Interface indexers
Interface indexers are declared using interface-indexer-declarations:

interface-indexer-declaration:
attributesopt newopt type this [formal-parameter-list] { interface-accessors }

The attributes, type, and formal-parameter-list of an interface indexer declaration have the same meaning as
those of an indexer declaration in a class (−10.8).

The accessors of an interface indexer declaration correspond to the accessors of a class indexer declaration
(−10.8), except that the accessor body must always be a semicolon. Thus, the accessors simply indicate whether
the indexer is read-write, read-only, or write-only.

13.2.5 Interface member access
Interface members are accessed through member access (−7.5.4) and indexer access (−7.5.6.2) expressions of
the form I.M and I[A], where I is an instance of an interface type, M is a method, property, or event of that
interface type, and A is an indexer argument list.

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or one
direct base interface), the effects of the member lookup (−7.3), method invocation (−7.5.5.1), and indexer access
(−7.5.6.2) rules are exactly the same as for classes and structs: More derived members hide less derived
members with the same name or signature. However, for multiple-inheritance interfaces, ambiguities can occur
when two or more unrelated base interfaces declare members with the same name or signature. This section
shows several examples of such situations. In all cases, explicit casts can be included in the program code to
resolve the ambiguities.

In the example
interface IList
{
 int Count { get; set; }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 13 Interfaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 269

interface ICounter
{
 void Count(int i);
}

interface IListCounter: IList, ICounter {}

class C
{
 void Test(IListCounter x) {
 x.Count(1); // Error
 x.Count = 1; // Error
 ((IList)x).Count = 1; // Ok, invokes IList.Count.set
 ((ICounter)x).Count(1); // Ok, invokes ICounter.Count
 }
}

the first two statements cause compile-time errors because the member lookup (−7.3) of Count in
IListCounter is ambiguous. As illustrated by the example, the ambiguity is resolved by casting x to the
appropriate base interface type. Such casts have no run-time costs’ they merely consist of viewing the instance
as a less derived type at compile-time.

In the example
interface IInteger
{
 void Add(int i);
}

interface IDouble
{
 void Add(double d);
}

interface INumber: IInteger, IDouble {}

class C
{
 void Test(INumber n) {
 n.Add(1); // Error, both Add methods are applicable
 n.Add(1.0); // Ok, only IDouble.Add is applicable
 ((IInteger)n).Add(1); // Ok, only IInteger.Add is a candidate
 ((IDouble)n).Add(1); // Ok, only IDouble.Add is a candidate
 }
}

the invocation n.Add(1) is ambiguous because a method invocation (−7.5.5.1) requires all overloaded
candidate methods to be declared in the same type. However, the invocation n.Add(1.0) is permitted because
only IDouble.Add is applicable. When explicit casts are inserted, there is only one candidate method, and thus
no ambiguity.

In the example
interface IBase
{
 void F(int i);
}

interface ILeft: IBase
{
 new void F(int i);
}

interface IRight: IBase
{
 void G();
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

270 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

interface IDerived: ILeft, IRight {}

class A
{
 void Test(IDerived d) {
 d.F(1); // Invokes ILeft.F
 ((IBase)d).F(1); // Invokes IBase.F
 ((ILeft)d).F(1); // Invokes ILeft.F
 ((IRight)d).F(1); // Invokes IBase.F
 }
}

the IBase.F member is hidden by the ILeft.F member. The invocation d.F(1) thus selects ILeft.F, even
though IBase.F appears to not be hidden in the access path that leads through IRight.

The intuitive rule for hiding in multiple-inheritance interfaces is simply this: If a member is hidden in any access
path, it is hidden in all access paths. Because the access path from IDerived to ILeft to IBase hides
IBase.F, the member is also hidden in the access path from IDerived to IRight to IBase.

13.3 Fully qualified interface member names
An interface member is sometimes referred to by its fully qualified name. The fully qualified name of an
interface member consists of the name of the interface in which the member is declared, followed by a dot,
followed by the name of the member. The fully qualified name of a member references the interface in which
the member is declared. For example, given the declarations

interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

the fully qualified name of Paint is IControl.Paint and the fully qualified name of SetText is
ITextBox.SetText.

In the example above, it is not possible to refer to Paint as ITextBox.Paint.

When an interface is part of a namespace, the fully qualified name of an interface member inc ludes the
namespace name. For example

namespace System
{
 public interface ICloneable
 {
 object Clone();
 }
}

Here, the fully qualified name of the Clone method is System.ICloneable.Clone.

13.4 Interface implementations
Interfaces may be implemented by classes and structs. To indicate that a class or struct implements an interface,
the interface identifier is included in the base class list of the class or struct.

interface ICloneable
{
 object Clone();
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 13 Interfaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 271

interface IComparable
{
 int CompareTo(object other);
}

class ListEntry: ICloneable, IComparable
{
 public object Clone() {...}

 public int CompareTo(object other) {...}
}

A class or struct that implements an interface also implicitly implements all of the interface §s base interfaces.
This is true even if the class or struct doesn§t explicitly list all base interfaces in the base class list.

interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

class TextBox: ITextBox
{
 public void Paint() {...}

 public void SetText(string text) {...}
}

Here, class TextBox implements both IControl and ITextBox.

13.4.1 Explicit interface member implementations
For purposes of implementing interfaces, a class or struct may declare explicit interface member
implementations. An explicit interface member implementation is a method, property, event, or indexer
declaration that references a fully qualified interface member name. For example

interface ICloneable
{
 object Clone();
}

interface IComparable
{
 int CompareTo(object other);
}

class ListEntry: ICloneable, IComparable
{
 object ICloneable.Clone() {...}

 int IComparable.CompareTo(object other) {...}
}

Here, ICloneable.Clone and IComparable.CompareTo are explicit interface member implementations.

In some cases, the name of an interface member may not be appropriate for the implementing class, in which
case the interface member may be implemented using explicit interface member implementation. A class
implementing a file abstraction, for example, would likely implement a Close member function that has the
effect of releasing the file resource, and implement the Dispose method of the IDisposable interface using
explicit interface member implementation:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

272 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

interface IDisposable {
 void Dispose();
}

class MyFile: IDisposable {
 void IDisposable.Dispose() {
 Close();
 }

 public void Close() {
 // Do what's necessary to close the file
 GC.SuppressFinalize(this);
 }
}

It is not possible to access an explicit interface member implementation through its fully qualified name in a
method invocation, property access, or indexer access. An explicit interface member implementation can only
be accessed through an interface instance, and is in that case referenced simply by its member name.

It is an error for an explicit interface member implementation to includ e access modifiers, as is it an error to
include the abstract, virtual, override, or static modifiers.

Explicit interface member implementations have different accessibility characteristics than other members.
Because explicit interface member implementations are never accessible through their fully qualified name in a
method invocation or a property access, they are in a sense private. However, since they can be accessed
through an interface instance, they are in a sense also public.

Explicit interface member implementations serve two primary purposes:

• Because explicit interface member implementations are not accessible through class or struct instances, they
allow interface implementations to be excluded from the public interface of a class or struct. This is
particularly useful when a class or struct implements an internal interface that is of no interest to a consumer
of the class or struct.

• Explicit interface member implementations allow disambiguation of interface members with the same
signature. Without explicit interface member implementations it would be impossible for a class or struct to
have different implementations of interface members with the same signature and return type, as would it be
impossible for a class or struct to have any implementat ion at all of interface members with the same
signature but with different return types.

For an explicit interface member implementation to be valid, the class or struct must name an interface in its
base class list that contains a member whose fully qualified name, type, and parameter types exactly match those
of the explicit interface member implementation. Thus, in the following class

class Shape: ICloneable
{
 object ICloneable.Clone() {...}

 int IComparable.CompareTo(object other) {...} // invalid
}

the declaration of IComparable.CompareTo is invalid because IComparable is not listed in the base class
list of Shape and is not a base interface of ICloneable. Likewise, in the declarations

class Shape: ICloneable
{
 object ICloneable.Clone() {...}
}

class Ellipse: Shape
{
 object ICloneable.Clone() {...} // invalid
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 13 Interfaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 273

the declaration of ICloneable.Clone in Ellipse is in error because ICloneable is not explicitly listed in
the base class list of Ellipse.

The fully qualified name of an interface member must reference the interface in which the member was
declared. Thus, in the declarations

interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

class TextBox: ITextBox
{
 void IControl.Paint() {...}

 void ITextBox.SetText(string text) {...}
}

the explicit interface member implementation of Paint must be written as IControl.Paint.

13.4.2 Interface mapping
A class or struct must provide implementations of all members of the interfaces that are listed in the base class
list of the class or struct. The process of locating implementations of interface members in an implementing
class or struct is known as interface mapping.

Interface mapping for a class or struct C locates an implementation for each member of each interface specified
in the base class list of C. The implementation of a particular interface member I.M, where I is the interface in
which the member M is declared, is determined by examining each class or struct S, starting with C and repeating
for each successive base class of C, until a match is located:

• If S contains a declaration of an explicit interface member implementation that matches I and M, then this
member is the implementation of I.M.

• Otherwise, if S contains a declaration of a non-static public member that matches M, then this member is the
implementation of I.M.

An error occurs if implementations cannot be located for all members of all interfaces specified in the base class
list of C. Note that the members of an interface include those members that are inheri ted from base interfaces.

For purposes of interface mapping, a class member A matches an interface member B when:

• A and B are methods, and the name, type, and formal parameter lists of A and B are identical.

• A and B are properties, the name and type of A and B are identical, and A has the same accessors as B (A is
permitted to have additional accessors if it is not an explicit interface member implementation).

• A and B are events, and the name and type of A and B are identical.

• A and B are indexers, the type and formal parameter lists of A and B are identical, and A has the same
accessors as B (A is permitted to have additional accessors if it is not an explicit interface member
implementation).

Notable implications of the interface mapping algorithm are:

• Explicit interface member implementations take precedence over other members in the same class or struct
when determining the class or struct member that implements an interface member.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

274 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• Neither non-public nor static members participate in interface mapping.

In the example
interface ICloneable
{
 object Clone();
}

class C: ICloneable
{
 object ICloneable.Clone() {...}

 public object Clone() {...}
}

the ICloneable.Clone member of C becomes the implementation of Clone in ICloneable because explicit
interface member implementations take precedence over other members.

If a class or struct implements two or more interfaces containing a member with the same name, type, and
parameter types, it is possible to map each of those interface members onto a single class or st ruct member. For
example

interface IControl
{
 void Paint();
}

interface IForm
{
 void Paint();
}

class Page: IControl, IForm
{
 public void Paint() {...}
}

Here, the Paint methods of both IControl and IForm are mapped onto the Paint method in Page. It is of
course also possible to have separate explicit interface member implementations for the two methods.

If a class or struct implements an interface that contains hidden members, then some members must necessarily
be implemented through explicit interface member implementations. For example

interface IBase
{
 int P { get; }
}

interface IDerived: IBase
{
 new int P();
}

An implementation of this interface would require at least one explicit interface member implementation, and
would take one of the following forms

class C: IDerived
{
 int IBase.P { get {...} }

 int IDerived.P() {...}
}

class C: IDerived
{
 public int P { get {...} }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 13 Interfaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 275

 int IDerived.P() {...}
}

class C: IDerived
{
 int IBase.P { get {...} }

 public int P() {...}
}

When a class implements multiple interfaces that have the same base interface, there can be only one
implementation of the base interface. In the example

interface IControl
{
 void Paint();
}

interface ITextBox: IControl
{
 void SetText(string text);
}

interface IListBox: IControl
{
 void SetItems(string[] items);
}

class ComboBox: IControl, ITextBox, IListBox
{
 void IControl.Paint() {...}

 void ITextBox.SetText(string text) {...}

 void IListBox.SetItems(string[] items) {...}
}

it is not possible to have separate implementations for the IControl named in the base class list, the IControl
inherited by ITextBox, and the IControl inherited by IListBox. Indeed, there is no notion of a separate
identity for these interfaces. Rather, the implementations of ITextBox and IListBox share the same
implementation of IControl, and ComboBox is simply considered to implement three interfaces, IControl,
ITextBox, and IListBox.

The members of a base class participate in interface mapping. In the example
interface Interface1
{
 void F();
}

class Class1
{
 public void F() {}

 public void G() {}
}

class Class2: Class1, Interface1
{
 new public void G() {}
}

the method F in Class1 is used in Class2's implementation of Interface1.

13.4.3 Interface implementation inheritance
A class inherits all interface implementations provided by its base classes.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

276 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

Without explicitly re-implementing an interface, a derived class cannot in any way alter the interface mappings
it inherits from its base classes. For example, in the declarations

interface IControl
{
 void Paint();
}

class Control: IControl
{
 public void Paint() {...}
}

class TextBox: Control
{
 new public void Paint() {...}
}

the Paint method in TextBox hides the Paint method in Control, but it does not alter the mapping of
Control.Paint onto IControl.Paint, and calls to Paint through class instances and interface instances
will have the following effects

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // invokes Control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes Control.Paint();

However, when an interface method is mapped onto a virtual method in a class, it is possible for derived classes
to override the virtual method and alter the implementation of the interface. For example, rewriting the
declarations above to

interface IControl
{
 void Paint();
}

class Control: IControl
{
 public virtual void Paint() {...}
}

class TextBox: Control
{
 public override void Paint() {...}
}

the following effects will now be observed
Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // invokes Control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes TextBox.Paint();

Since explicit interface member implementations cannot be declared virtual, it is not possible to override an
explicit interface member implementation. However, it is perfectly valid for an explicit interface member
implementation to call another method, and that other method can be declared virtual to allow derived classes to
override it. For example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 13 Interfaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 277

interface IControl
{
 void Paint();
}

class Control: IControl
{
 void IControl.Paint() { PaintControl(); }

 protected virtual void PaintControl() {...}
}

class TextBox: Control
{
 protected override void PaintControl() {...}
}

Here, classes derived from Control can specialize the implementation of IControl.Paint by overriding the
PaintControl method.

13.4.4 Interface re-implementation
A class that inherits an interface implementation is permitted to re-implement the interface by including it in the
base class list.

A re-implementation of an interface follows exactly the same interface mapping rules as an initial
implementation of an interface. Thus, the inherited interface mapping has no effect whatsoever on the interface
mapping established for the re-implementation of the interface. For example, in the declarations

interface IControl
{
 void Paint();
}

class Control: IControl
{
 void IControl.Paint() {...}
}

class MyControl: Control, IControl
{
 public void Paint() {}
}

the fact that Control maps IControl.Paint onto Control.IControl.Paint doesn§t affect the re-
implementation in MyControl, which maps IControl.Paint onto MyControl.Paint.

Inherited public member declarations and inherited explicit interface member declarations participate in the
interface mapping process for re-implemented interfaces. For example

interface IMethods
{
 void F();
 void G();
 void H();
 void I();
}

class Base: IMethods
{
 void IMethods.F() {}
 void IMethods.G() {}
 public void H() {}
 public void I() {}
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

278 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

class Derived: Base, IMethods
{
 public void F() {}
 void IMethods.H() {}
}

Here, the implementation of IMethods in Derived maps the interface methods onto Derived.F,
Base.IMethods.G, Derived.IMethods.H, and Base.I.

When a class implements an interface, it implicitly also implements all of the interface §s base interfaces.
Likewise, a re-implementation of an interface is also implicitly a re -implementation of all of the interface§s base
interfaces. For example

interface IBase
{
 void F();
}

interface IDerived: IBase
{
 void G();
}

class C: IDerived
{
 void IBase.F() {...}

 void IDerived.G() {...}
}

class D: C, IDerived
{
 public void F() {...}

 public void G() {...}
}

Here, the re-implementation of IDerived also re-implements IBase, mapping IBase.F onto D.F.

13.4.5 Abstract classes and interfaces
Like a non-abstract class, an abstract class must provide implementations of all members of the interfaces that
are listed in the base class list of the class. However, an abstract class is permitted to map interface methods onto
abstract methods. For example

interface IMethods
{
 void F();
 void G();
}

abstract class C: IMethods
{
 public abstract void F();
 public abstract void G();
}

Here, the implementation of IMethods maps F and G onto abstract methods, which must be overridden in non-
abstract classes that derive from C.

Note that explicit interface member implementations cannot be abstract, but explicit interface member
implementations are of course permitted to call abstract methods. For example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 13 Interfaces

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 279

interface IMethods
{
 void F();
 void G();
}

abstract class C: IMethods
{
 void IMethods.F() { FF(); }

 void IMethods.G() { GG(); }

 protected abstract void FF();

 protected abstract void GG();
}

Here, non-abstract classes that derive from C would be required to override FF and GG, thus providing the actual
implementation of IMethods.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 14 Enums

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 281

14. Enums

An enum type is a distinct type that declares a set of named constants.

The example
enum Color
{
 Red,
 Green,
 Blue
}

declares an enum type named Color with members Red, Green, and Blue.

14.1 Enum declarations
An enum declaration declares a new enum type. An enum declaration begins with the keyword enum, and
defines the name, accessibility, underlying type, and members of the enum.

enum-declaration:
attributesopt enum-modifiersopt enum identifier enum-baseopt enum-body ;opt

enum-base:
: integral-type

enum-body:
{ enum-member-declarationsopt }
{ enum-member-declarations , }

Each enum type has a corresponding integral type called the underlying type of the enum type. This underlying
type must be able to represent all the enumerator values defined in the enumeration. An enum declaration may
explicitly declare an underlying type of byte, sbyte, short, ushort, int, uint, long or ulong. Note that
char cannot be used as an underlying type. An enum declaration that does not explicitly declare an underlying
type has an underlying type of int.

Enum member declarations are separated the comma (” ,„) character, and a comma is permitted but not required
after the last one. Both of the enum declarations in the example

enum Color1
{
 Red,
 Green,
 Blue
}

enum Color2
{
 Red,
 Green,
 Blue,
}

are valid.

The example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

282 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

enum Color: long
{
 Red,
 Green,
 Blue
}

declares an enum with an underlying type of long. A developer might choose to use an underlying type of
long, as in the example, to enable the use of values that are in the range of long but not in the range of int, or
to preserve this option for the future.

14.2 Enum modifiers
An enum-declaration may optionally include a sequence of enum modifiers:

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

enum-modifier:
new
public

protected

internal
private

It is an error for the same modifier to appear multiple times in an enum declaration.

The modifiers of an enum declaration have the same meaning as those of a class declaration (−10.1.1). Note,
however, that the abstract and sealed modifiers are not permitted in an enum declaration. Enums cannot be
abstract and do not permit derivation.

14.3 Enum members
The body of an enum type declaration defines zero or more enum members, which are the named constants of
the enum type. No two enum members can have the same name.

enum-member-declarations:
enum-member-declaration
enum-member-declarations , enum-member-declaration

enum-member-declaration:
attributesopt identifier
attributesopt identifier = constant-expression

Each enum member has an associated constant value. The type of this value is the underlying type for the
containing enum. The constant value for each enum member must be in the range of the underlying type for the
enum. The example

enum Color: uint
{
 Red = -1,
 Green = -2,
 Blue = -3
}

is in error because the constant values -1, -2, and “3 are not in the range of the underlying integral type uint.

Multiple enum members may share the same associated value. The example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 14 Enums

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 283

enum Color
{
 Red,
 Green,
 Blue,

 Max = Blue
}

shows an enum that has two enum members’ Blue and Max’ that have the same associated value.

The associated value of an enum member is assigned either implicitly or explicitly. If the declaration of the
enum member has a constant-expression initializer, the value of that constant expression, implicitly converted to
the underlying type of the enum, is the associated value of the enum member. If the declaration of the enum
member has no initializer, its associated value is set implicitly, as follows:

• If the enum member is the first enum member declared in the enum type, its associated value is zero.

• Otherwise, the associated value of the enum member is obtained by increasing the associated value of the
textually preceding enum member by one. This increased value must be within the range of values that can
be represented by the underlying type.

The example
using System;

enum Color
{
 Red,
 Green = 10,
 Blue
}

class Test
{
 static void Main() {
 Console.WriteLine(StringFromColor(Color.Red));
 Console.WriteLine(StringFromColor(Color.Green));
 Console.WriteLine(StringFromColor(Color.Blue));
 }

 static string StringFromColor(Color c) {
 switch (c) {
 case Color.Red:
 return String.Format("Red = {0}", (int) c);

 case Color.Green:
 return String.Format("Green = {0}", (int) c);

 case Color.Blue:
 return String.Format("Blue = {0}", (int) c);

 default:
 return "Invalid color";
 }
 }
}

prints out the enum member names and their associated values. The output is:
Red = 0
Green = 10
Blue = 11

for the following reasons:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

284 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• the enum member Red is automatically assigned the value zero (since it has no initializer and is the first
enum member);

• the enum member Green is explicitly given the value 10;

• and the enum member Blue is automatically assigned the value one greater than the member that textually
precedes it.

The associated value of an enum member may not, directly or indirectly, use the value of its own associated
enum member. Other than this circularity restriction, enum member initializers may freely refer to other enum
member initializers, regardless of their textual position. Within an enum member initializer, values of other
enum members are always treated as having the type of their underlying type, so that casts are not necessary
when referring to other enum members.

The example
enum Circular
{
 A = B,
 B
}

is invalid because the declarations of A and B are circular. A depends on B explicitly, and B depends on A
implicitly.

Enum members are named and scoped in a manner exactly analogous to fields within classes. The scope of an
enum member is the body of its containing enum type. Within that scope, enum members can be referred to by
their simple name. From all other code, the name of an enum member must be qualified with the name of its
enum type. Enum members do not have any declared accessibility’ an enum member is accessible if its
containing enum type is accessible.

14.4 Enum values and operations
Each enum type defines a distinct type; an explicit enumeration conversion (−6.2.2) is required to convert
between an enum type and an integral type, or between two enum types. The set of values that an enum type can
take on is not limited by its enum members. In particular, any value of the underlying type of an enum can be
cast to the enum type, and is a distinct valid value of that enum type.

Enum members have the type of their containing enum type (except within other enum member initializers: see
−14.3). The value of an enum member declared in enum type E with associated value v is (E)v.

The following operators can be used on values of enum types: ==, !=, <, >, <=, >= (−7.9.5), + (−7.7.4),
- (−7.7.5), ^, &, | (−7.10.2), ~ (−7.6.4), ++, -- (−7.5.9, −7.6.7), sizeof (−A.5.4).

Every enum type automatically derives from the class System.Enum. Thus, inherited methods and properties of
this class can be used on values of an enum type.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 15 Delegates

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 285

15. Delegates

Delegates enable scenarios that other languages’ such as C++, Pascal, and Modula’ have addressed with
function pointers. Unlike C++ function pointers, delegates are fully object oriented; unlike C++ po inters to
member functions, delegates encapsulate both an object instance and a method.

A delegate declaration defines a class that derives from the class System.Delegate. A delegate instance
encapsulates one or more methods, each of which is referred to as a callable entity. For instance methods, a
callable entity consists of an instance and a method on the instance. For static methods, a callable entity consists
of just a method. Given a delegate instance and an appropriate set of arguments, one can invoke all of that
delegate's instance's methods with that set of arguments.

An interesting and useful property of a delegate instance is that it does not know or care about the classes of the
methods it encapsulates; all that matters is that the methods are c ompatible (−15.1) with the delegate's type. This
makes delegates perfectly suited for ” anonymous„ invocation.

15.1 Delegate declarations
A delegate-declaration is a type-declaration (−9.5) that declares a new delegate type.

delegate-declaration:
attributesopt delegate-modifiersopt delegate return-type identifier (formal-parameter-listopt
) ;

delegate-modifiers:
delegate-modifier
delegate-modifiers delegate-modifier

delegate-modifier:
new
public

protected

internal
private

It is an error for the same modifier to appear multiple times in a delegate declaration.

The new modifier is only permitted on delegates declared within another type. It specifies that the delegate hides
an inherited member by the same name, as described in −10.2.2.

The public, protected, internal, and private modifiers control the accessibility of the delegate type.
Depending on the context in which the delegate declaration occurs, some of these modifiers may not be
permitted (−3.5.1).

The delegate's type name is identifier.

The optional formal-parameter-list specifies the parameters of the delegate, and return-type indicates the return
type of the delegate. A method and a delegate type are compatible if their formal-parameter-lists contain the
exact same order, number, and types of parameters, same parameter modifiers, and their return-types are the
same. Delegate types in C# are name equivalent, not structurally equivalent. (However, note that instances of
two distinct but structurally equivalent delegate types may compare as equal (−7.9.8).) Specifically, two

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

286 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

different delegate types that have the same parameter lists and signature an d return type are considered different
delegate types.

For example:
delegate int D1(int i, double d);

class A
{
 public static int M1(int a, double b) { /* ... */ }
}

class B
{
 delegate int D2(int c, double d);

 public static int M1(int f, double g) { /* ... */ }

 public static void M2(int k, double l) { /* ... */ }

 public static int M3(int g) { /* ... */ }

 public static void M4(int g) { /* ... */ }
}

The delegate types D1 and D2 are both compatible with the methods A.M1 and B.M1, since they have the same
return type and parameter list; however, these delegate types are two different types, so they are not
interchangeable. The delegate types D1 and D2 are incompatible with the methods B.M2, B.M3, and B.M4, since
they have different return types or parameter lists.

The only way to declare a delegate type is via a delegate-declaration. A delegate type is a class type that is
derived from System.Delegate. Delegate types are implicitly sealed, so it is not permissible to derive any
type from a delegate type. It is also not permissible to derive a non-delegate class type from
System.Delegate. Note that System.Delegate is not itself a delegate type; it is a class type from which all
delegate types are derived.

C# provides special syntax for delegate instantiation and invocation. Except for instantiation, any operation that
can be applied to a class or class instance can also be applied to a delegate class or instance, respectively. In
particular, it is possible to access members of the System.Delegate type via the usual member access syntax.

The set of methods encapsulated by a delegate instance is called an invocation list. When a delegate instance is
created (−15.2) from a single method, it encapsulates that method, and its invocation list contains only one entry.
However, when two non-null delegate instances are combined, their invocation lists are concatenated’ in the
order left operand then right operand’ to form a new invocation list, which contains two or more entries.

Delegates are combined using the binary + (−7.7.4) and += operators (−7.13.2). A delegate can be removed from
a combination of delegates, using the binary - (−7.7.5) and -= operators (−7.13.2). Delegates can be compared
for equality (−7.9.8).

The example
delegate void D(int x);

class C
{
 public static void M1(int i) { /* */ }

 public static void M2(int i) { /* */ }

}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 15 Delegates

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 287

class Test
{
 static void Main() {
 D cd1 = new D(C.M1); // M1
 D cd2 = new D(C.M2); // M2
 D cd3 = cd1 + cd2; // M1 + M2
 D cd4 = cd3 + cd1; // M1 + M2 + M1
 D cd5 = cd4 + cd3; // M1 + M2 + M1 + M1 + M2
 }

}

shows the instantiation of a number of delegates, and their corresponding invocation lists. When cd1 and cd2
are instantiated, they each encapsulate one method. When cd3 is instantiated, it has an invocation list of two
methods, M1 and M2, in that order. cd4§s invocation list contains M1, M2, and M1, in that order. Finally, cd5§s
invocation list contains M1, M2, M1, M1, and M2, in that order. For more examples of combining (as well as
removing) delegates, see −15.3.

15.2 Delegate instantiation
An instance of a delegate is created by a delegate-creation-expression (−7.5.10.3). The newly created delegate
instance then refers to either:

• The static method referenced in the delegate-creation-expression, or

• The target object (which cannot be null) and instance method referenced in the delegate-creation-
expression, or

• Another delegate

For example:
delegate void D(int x);

class C
{
 public static void M1(int i) { /* ... */}
 public void M2(int i) { /* ... */}
}

class Test
{
 static void Main() {
 D cd1 = new D(C.M1); // static method
 Test t = new C();
 D cd2 = new D(t.M2); // instance method
fs D cd3 = new D(cd2); // another delegate
 }
}

Once instantiated, delegate instances always refer to the same target object and method. When two delegates are
combined, or one is removed from another, a new delegate results with its own invocation list; the invocation
lists of the delegates combined or removed remain unchanged.

15.3 Delegate invocation
C# provides special syntax for invoking a delegate. When a non-null delegate instance whose invocation list
contains one entry is invoked, it invokes the one method with the same arguments it was given, and returns the
same value as the referred to method. See −7.5.5.2 for detailed information on delegate invocation. If an
exception occurs during the invocation of such a delegate, and the exception is not caught within the method
that was invoked, the search for an exception catch clause continues in the method that called the delegate, a s if
that method had directly called the method to which the delegate referred.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

288 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

Invocation of a delegate instance whose invocation list contains multiple entries proceeds by invoking each of
the methods on the invocation list, synchronously, in order. Each method so called is passed the same set of
arguments as was given to the delegate instance. If such a delegate invocation includes reference parameters
(−10.5.1.2), each method invocation will occur with a reference to the same variable; changes to that variable by
one method in the invocation list will be visible to methods further down the invocation list. If the delegate
invocation includes output parameters or a return value, their final value will come from the invocation of the
last delegate in the list.

If an exception occurs during processing of the invocation of such a delegate, and the exception is not caught
within the method that was invoked, the search for an exception catch clause continues in the method that calle d
the delegate, and any methods further down the invocation list are not invoked.

Attempting to invoke a delegate instance whose value is null results in an exception of type
System.NullReferenceException.

The following example shows how to instantiate, combine, remove, and invoke delegates:
delegate void D(int x);

class C
{
 public static void M1(int i) {
 Console.WriteLine("C.M1: " + i);
 }

 public static void M2(int i) {
 Console.WriteLine("C.M2: " + i);
 }

 public void M3(int i) {
 Console.WriteLine("C.M3: " + i);
 }
}

class Test
{
 static void Main() {
 D cd1 = new D(Test.M1);
 cd1(-1); // call M1

 D cd2 = new D(Test.M2);
 cd2(-2); // call M2

 D cd3 = cd1 + cd2;
 cd3(10); // call M1 then M2

 cd3 += cd1;
 cd3(20); // call M1, M2, then M1

 C c = new C();
 D cd4 = new D(c.M3);
 cd3 += cd4;
 cd3(30); // call M1, M2, M1, then M3

 cd3 -= cd1; // remove last M1
 cd3(40); // call M1, M2, then M3

 cd3 -= cd4;
 cd3(50); // call M1 then M2

 cd3 -= cd2;
 cd3(60); // call M1

 cd3 -= cd2; // impossible removal is benign
 cd3(60); // call M1

cd3 -= cd1; // invocation list is empty

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 15 Delegates

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 289

// cd3(70); // System.NullReferenceException thrown

 cd3 -= cd1; // impossible removal is benign
 }
}

As shown in the statement cd3 += cd1;, a delegate can be present in an invocation list multiple times. In this
case, it is simply invoked once per occurrence. In an invocation list such as this, when that delegate is removed,
the last occurrence in the invocation list is the one actually removed.

Immediately prior to the execution of the final statement, cd3 -= cd1;, the delegate cd3 refers to an empty
invocation list. Attempting to remove a delegate from an empty list (or to remove a non -existent delegate from a
non-empty list) is not an error.

The output produced is:
C.M1: -1
C.M2: -2
C.M1: 10
C.M2: 10
C.M1: 20
C.M2: 20
C.M1: 20
C.M1: 30
C.M2: 30
C.M1: 30
C.M3: 30
C.M1: 40
C.M2: 40
C.M3: 40
C.M1: 50
C.M2: 50
C.M1: 60
C.M1: 60

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 16 Exceptions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 291

16. Exceptions

Exceptions in C# provide a structured, uniform, and type-safe way of handling both system level and application
level error conditions. The exception mechanism is C# is quite similar to that of C++, with a few important
differences:

• In C#, all exceptions must be represented by an instance of a class type derived from System.Exception.
In C++, any value of any type can be used to represent an exception.

• In C#, a finally block (−8.10) can be used to write termination code that executes in both normal execution
and exceptional conditions. Such code is difficult to write in C++ without duplicating code.

• In C#, system-level exceptions such as overflow, divide-by-zero, and null dereferences have well defined
exception classes and are on a par with application-level error conditions.

16.1 Causes of exceptions
Exception can be thrown in two different ways.

• A throw statement (−8.9.5) throws an exception immediately and unconditionally. Control never reaches
the statement immediately following the throw.

• Certain exceptional conditions that arise during the processing of C# statements and expression cause an
exception in certain circumstances when the operation cannot be completed normally. For example, an
integer division operation (−7.7.2) throws a System.DivideByZeroException if the denominator is
zero. See −16.4 for a list of the various exceptions that can occur in this way.

16.2 The System.Exception class
The System.Exception class is the base type of all exceptions. This class has a few notable properties that all
exceptions share:

• Message is a read-only property of type string that contains a human-readable description of the reason
for the exception.

• InnerException is a read-only property of type Exception. If its value is non-null, it refers to the
exception that caused the current exception. Otherwise, its value is null, indicating that this exception was
not caused by another exception. (The number of exception objects chained together in this manner can be
arbitrary.)

The value of these properties can be specified in calls to the instance constructor for System.Exception.

16.3 How exceptions are handled
Exception are handled by a try statement (−8.10).

When an exception occurs, the system searches for the nearest catch clause that can handle the exception, as
determined by the run-time type of the exception. First, the current method is searched for a lexically enclosing
try statement, and the associated catch clauses of the try statement are considered in order. If that fails, the
method that called the current method is searched for a lexically enclosing try statement that encloses the point
of the call to the current method. This search continues until a catch clause is found that can handle the current

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

292 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

exception, by naming an exception class that is of the same class, or a base class, of the run -time type of the
exception being thrown. A catch clause that doesn§t name an exception class can handle any exception.

Once a matching catch clause is found, the system transfers control to the first statement of the catch clause.
Before execution of the catch clause begins, the system first executes, in order, any finally clauses that were
associated with try statements more nested that than the one that caught the exception.

If no matching catch clause is found, one of two things occurs:

• If the search for a matching catch clause reaches a static constructor (−10.11) or static field initializer, then a
System.TypeInitializationException is thrown at the point that triggered the invocation of the
static constructor. The inner exception of the System.TypeInitializationException contains the
exception that was originally thrown.

• If the search for matching catch clauses reaches the code that initially started the thread, then execution of
the thread is terminated. The impact of such termination is implementation -defined.

16.4 Common Exception Classes
The following exceptions are thrown by certain C# operations.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 16 Exceptions

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 293

System.OutOfMemoryException Thrown when an attempt to allocate memory (via
new) fails.

System.StackOverflowException Thrown when the execution stack is exhausted by
having too many pending method calls; typically
indicative of very deep or unbounded recursion.

System.NullReferenceException Thrown when a null reference is used in a way
that causes the referenced object to be required.

System.TypeInitializationException Thrown when a static constructor throws an
exception, and no catch clauses exists to catch it.

System.InvalidCastException Thrown when an explicit conversion from a base
type or interface to a derived types fails at run
time.

System.ArrayTypeMismatchException Thrown when a store into an array fails because the
actual type of the stored element is incompatible
with the actual type of the array.

System.IndexOutOfRangeException Thrown when an attempt to index an array via an
index that is less than zero or outside the bounds of
the array.

System.MulticastNotSupportedException Thrown when an attempt to combine two non-
null delegates fails, because the delegate type
does not have a void return type.

System.ArithmeticException A base class for exceptions that occur during
arithmetic operations, such as
System.DivideByZeroException and
System.OverflowException.

System.DivideByZeroException Thrown when an attempt to divide an integral
value by zero occurs.

System.OverflowException Thrown when an arithmetic operation in a
checked context overflows.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 17 Attributes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 295

17. Attributes

Much of the C# language enables the programmer to specify declarative information about the entities defined
in the program. For example, the accessibility of a method in a class is specified by decorating it with the
method-modifiers public, protected, internal, and private.

C# enables programmers to invent new kinds of declarative information, called attributes. Programmers can
then attach attributes to various program entities, and retrieve attribute information in a run -time environment.
For instance, a framework might define a HelpAttribute attribute that can be placed on certain program
elements (such as classes and methods) to provide a mapping from those program elements to documentation.

Attributes are defined through the declaration of attribute classes (−17.1), which may have positional and named
parameters (−17.1.2). Attributes are attached to entities in a C# program using attribute specification (−17.2),
and can be retrieved at run-time as attribute instances (−17.3).

17.1 Attribute classes
A class that derives from the abstract class System.Attribute, whether directly or indirectly, is an attribute
class. The declaration of an attribute class defines a new kind of attribute that can be placed on a declaration. By
convention, attribute classes are named with a suffix of Attribute. Uses of an attribute may either include or
omit this suffix.

17.1.1 Attribute usage
The AttributeUsage attribute (−17.4.1) is used to describe how an attribute class can be used.

AttributeUsage has a positional parameter (−17.1.2) that enables an attribute class to specify the kinds of
declarations on which it can be used. The example

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
public class SimpleAttribute: Attribute
{}

defines an attribute class named SimpleAttribute that can be placed only on class-declarations and
interface-declarations. The example

[Simple] class Class1 {...}

[Simple] interface Interface1 {...}

shows several uses of the Simple attribute. Although this attribute is defined with the name
SimpleAttribute, when it is used the Attribute suffix may be omitted, resulting in the short name
Simple. The example above is semantically equivalent to:

[SimpleAttribute] class Class1 {...}

[SimpleAttribute] interface Interface1 {...}

AttributeUsage has a named parameter (−17.1.2) called AllowMultiple that indicates whether the attribute
can be specified more than once for a given entity. If AllowMultiple for an attribute class is true, then it is a
multi-use attribute class, and can be specified more than once on an entity. If AllowMultiple for an attribute
class is false or unspecified, then it is a single-use attribute class, and can be specified at most once on an entity.

The example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

296 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
public class AuthorAttribute: Attribute {
 public AuthorAttribute(string name) {
 this.name = name;
 }

 public string Name {
 get { return name; }
 }

 private string name;
}

defines a multi-use attribute class named AuthorAttribute. The example
[Author("Brian Kernighan"), Author("Dennis Ritchie")]
class Class1 {...}

shows a class declaration with two uses of the Author attribute.

AttributeUsage has a named parameter called Inherited that indicates whether the attribute, when
specified on a base class, is also inherited by classes that derive from that base class. If Inherited for an
attribute class is true, then that attribute is inherited . If Inherited for an attribute class is false or it is
unspecified, then that attribute is not inherited.

17.1.2 Positional and named parameters
Attribute classes can have positional parameters and named parameters. Each public instance constructor for
an attribute class defines a valid sequence of positional parameters for the attribute class. Each non-static public
read-write field and property for an attribute class defines a named parameter for the attribute class.

The example
[AttributeUsage(AttributeTargets.Class)]
public class HelpAttribute: Attribute
{

 public HelpAttribute(string url) { // url is a positional parameter
 ...
 }

 public string Topic { // Topic is a named parameter
 get {...}
 set {...}
 }

 public string Url { get {...} }
}

defines an attribute class named HelpAttribute that has one positional parameter (string url) and one
named parameter (string Topic). Although it is non-static and public, the Url property does not define a
named parameter because it is not read-write.

The example
[Help("http://www.microsoft.com/.../Class1.htm")]
class Class1 {
}

[Help("http://www.microsoft.com/.../Misc.htm", Topic ="Class2")]
class Class2 {
}

shows several uses of the attribute.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 17 Attributes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 297

17.1.3 Attribute parameter types
The types of positional and named parameters for an attribute class are limit ed to the attribute parameter types,
which are:

• The types bool, byte, char, double, float, int, long, short, string.

• The type object.

• The type System.Type.

• An enum type provided it has public accessibility and the types in which it is nested (if any) also have
public accessibility.

17.2 Attribute specification
Attribute specification is the application of a previously defined attribute to a declaration. An attribute is a piece
of additional declarative information that is specified for a declaration. Attributes can be specified at global
scope (to specify attributes on the containing assembly or module) and for type-declarations (−9.5), class-
member-declarations (−10.2), interface-member-declarations (−13.2), enum-member-declarations (−14.3),
accessor-declarations for properties (−10.6.2), event-accessor-declarations (−10.7.1), and formal-parameter-
lists (−10.5.1).

Attributes are specified in attribute sections. An attribute section consists of a pair of square brackets, which
surround a comma-separated list of one or more attributes. The order in which attributes a re specified in such a
list, and the order in which sections appear, is not significant. For instance, the attribute specifications [A][B],
[B][A], [A, B], and [B, A] are equivalent.

attributes:
attribute-sections

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-target-specifieropt attribute-list]
[attribute-target-specifieropt attribute-list ,]

attribute-target-specifier:
attribute-target :

attribute-target:
assembly
field
event
method
module
param
property
return

type

attribute-list:
attribute
attribute-list , attribute

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

298 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

attribute:
attribute-name attribute-argumentsopt

attribute-name:
 type-name

attribute-arguments:
(positional-argument-listopt)
(positional-argument-list , named-argument-list)
(named-argument-list)

positional-argument-list:
positional-argument
positional-argument-list , positional-argument

positional-argument:
attribute-argument-expression

named-argument-list:
named-argument
named-argument-list , named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
expression

An attribute consists of an attribute-name and an optional list of positional and named arguments. The positional
arguments (if any) precede the named arguments. A positional argument consists of an attribute-argument-
expression; a named argument consists of a name, followed by an equal sign, followed by an attribute-
argument-expression. The order of named arguments is not significant.

The attribute-name identifies either a reserved attribute or an attribute class. If the form of attribute-name is
type-name then this name must refer to an attribute class. Otherwise, a compile -time error occurs. The example

class Class1 {}

[Class1] class Class2 {} // Error

is in error because it attempts to use Class1, which is not an attribute class, as an attribute class.

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly
specify the target by including an attribute-target-specifier. In all but one of these contexts, a reasonable default
can be employed. Thus, attribute-target-specifiers can typically be omitted. The potentially ambiguous contexts
are resolved as follows:

• An attribute specified at global scope can apply either to the target assembly or the target module. No
default exists for this context, so an attribute-target-specifier is always required in this context. The
presence of the assembly attribute-target-specifier indicates that the attribute applies to the target
assembly; the presence of the module attribute-target-specifier indicates that the attribute applies to the
target module.

• An attribute specified on a delegate declaration can apply either to the delegate or to its return value. In the
absence of an attribute-target-specifier, such an attribute applies to the delegate. The presence of the type
attribute-target-specifier indicates that the attribute applies to the delegate; the presence of the return
attribute-target-specifier indicates that the attribute applies to the return value.

• An attribute specified on a method declaration can apply either to the method or to its return value. In the
absence of an attribute-target-specifier, such an attribute applies to the method. The presence of the method

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 17 Attributes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 299

attribute-target-specifier indicates that the attribute applies to the method; the presence of the return
attribute-target-specifier indicates that the attribute applies to the return value.

• An attribute specified on an operator declaration can apply either to the operator or to its return value. In the
absence of an attribute-target-specifier, such an attribute applies to the operator. The presence of the type
attribute-target-specifier indicates that the attribute applies to the operator; the presence of the return
attribute-target-specifier indicates that the attribute applies to the return value.

• An attribute specified on an event declaration that omits event accessors can apply to the event, to the
associated field (if the event is non-abstract), or to the associated add and remove accessors. In the absence
of an attribute-target-specifier, such an attribute applies to the event. The presence of the event attribute-
target-specifier indicates that the attribute applies to the event; the presence of the field attribute-target-
specifier indicates that the attribute applies to the field; and the presence of the method attribute-target-
specifier indicates that the attribute applies to the associated add and remove accessors.

• An attribute specified on a get accessor declaration for a property can apply either to the accessor or to its
return value. In the absence of an attribute-target-specifier, such an attribute applies to the accessor. The
presence of the method attribute-target-specifier indicates that the attribute applies to the accessor; the
presence of the return attribute-target-specifier indicates that the attribute applies to the return value.

• An attribute specified on a set accessor for a property can apply either t o the accessor or to its implicit
parameter. In the absence of an attribute-target-specifier, such an attribute applies to the accessor. The
presence of the method attribute-target-specifier indicates that the attribute applies to the accessor; the
presence of the param attribute-target-specifier indicates that the attribute applies to the parameter.

• An attribute specified on an add or remove accessor for an event can apply either to the accessor or to its
lone parameter. In the absence of an attribute-target-specifier, such an attribute applies to the accessor. The
presence of the method attribute-target-specifier indicates that the attribute applies to the accessor; the
presence of the param attribute-target-specifier indicates that the attribute applies to the parameter.

In other contexts, inclusion of an attribute-target-specifier is permitted but unnecessary. For instance, a class
declaration may either include or omit the type attribute-target-specifier:

[type: Author("Brian Kernighan")]
class Class1 {}

[Author("Dennis Ritchie")]
class Class2 {}

It is an error to specify an invalid attribute-target-specifier. For instance, the param attribute-target-specifier
cannot be used on a class declaration:

[param: Author("Brian Kernighan")]
class Class1 {}

An implementation may accept additional attribute target specifiers with implementation -defined semantics.
However, an implementation that does not recognize such a target shall issue a warning.

By convention, attribute classes are named with a suffix of Attribute. An attribute-name of the form type-
name may either include or omit this suffix. An exact match between the attribute-name and the name of the
attribute class is preferred. The example

[AttributeUsage(AttributeTargets.All)]
public class X: Attribute
{}

[AttributeUsage(AttributeTargets.All)]
public class XAttribute: Attribute
{}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

300 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

[X] // refers to X
class Class1 {}

[XAttribute] // refers to XAttribute
class Class2 {}

shows two attribute classes named X and XAttribute. The attribute [X] refers to the class named X, and the
attribute [XAttribute] refers to the attribute class named [XAttribute]. If the declaration for class X is
removed, then both attributes refer to the attribute class named XAttribute:

[AttributeUsage(AttributeTargets.All)]
public class XAttribute: Attribute
{}

[X] // refers to XAttribute
class Class1 {}

[XAttribute] // refers to XAttribute
class Class2 {}

It is an error to use a single-use attribute class more than once on the same entity. The example
[AttributeUsage(AttributeTargets.Class)]
public class HelpStringAttribute: Attribute
{
 string value;

 public HelpStringAttribute(string value) {
 this.value = value;
 }

 public string Value { get {...} }
}

[HelpString("Description of Class1")]
[HelpString("Another description of Class1")]
public class Class1 {}

is in error because it attempts to use HelpString, which is a single-use attribute class, more than once on the
declaration of Class1.

An expression E is an attribute-argument-expression if all of the following statements are true:

• The type of E is an attribute parameter type (−17.1.3).

• At compile-time, the value of E can be resolved to one of the following:

o A constant-expression (−7.15).

o A typeof-expression (−7.5.11).

o An array-creation-expression (−7.5.10.2) of the form new T[] {E, E, ..., E}, where T is an attribute
parameter type and each E is an attribute-argument-expression.

17.3 Attribute instances
An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with an
attribute class, positional arguments, and named arguments. An attribute instance is an instance of the attribute
class that is initialized with the positional and named arguments.

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the
following sections.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 17 Attributes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 301

17.3.1 Compilation of an attribute
The compilation of an attribute with attribute class T, positional-argument-list P and named-argument-list N,
consists of the following steps:

• Follow the compile-time processing steps for compiling an object-creation-expression of the form new
T(P). These steps either result in a compile-time error, or determine a constructor on T that can be invoked
at run-time. Call this instance constructor C.

• If C does not have public accessibility, then a compile-time error occurs.

• For each named-argument Arg in N:

o Let Name be the identifier of the named-argument Arg.

o Name must identify a non-static read-write public field or property on T. If T has no such field or
property, then a compile-time error occurs.

• Keep the following information for run-time instantiation of the attribute: the attribute class T, the instance
constructor C on T, the positional-argument-list P and the named-argument-list N.

17.3.2 Run-time retrieval of an attribute instance
Compilation of an attribute yields an attribute class T, an instance constructor C on T, a positional-argument-list
P and a named-argument-list N. Given this information, an attribute instance can be retrieved at run-time using
the following steps:

• Follow the run-time processing steps for executing an object-creation-expression of the form new T(P),
using the instance constructor C as determined at compile-time. These steps either result in an exception, or
produce an instance of T. Call this instance O.

• For each named-argument Arg in N, in order:

o Let Name be the identifier of the named-argument Arg. If Name does not identify a non-static public
read-write field or property on O, then an exception is thrown.

o Let Value be the result of evaluating the attribute-argument-expression of Arg.

o If Name identifies a field on O, then set this field to the value Value.

o Otherwise, Name identifies a property on O. Set this property to the value Value.

o The result is O, an instance of the attribute class T that has been initialized with the positional-argument-
list P and the named-argument-list N.

17.4 Reserved attributes
A small number of attributes affect the language in some way. These attributes include:

• System.AttributeUsageAttribute (−17.4.1), which is used to describe the ways in which an attribute
class can be used.

• System.ConditionalAttribute (−17.4.2), which is used to define conditional methods.

• System.ObsoleteAttribute (−17.4.3), which is used to mark a member as obsolete.

17.4.1 The AttributeUsage attribute
The AttributeUsage attribute is used to describe the manner in which the attribute class can be used.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

302 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

A class that is decorated with the AttributeUsage attribute must derive from System.Attribute, either
directly or indirectly. Otherwise, a compile-time error occurs.

[AttributeUsage(AttributeTargets.Class)]
public class AttributeUsageAttribute: Attribute
{
 public AttributeUsageAttribute(AttributeTargets validOn) {...}

 public virtual bool AllowMultiple { get {...} set {...} }

 public virtual bool Inherited { get {...} set {...} }

 public virtual AttributeTargets ValidOn { get {...} }
}

public enum AttributeTargets
{
 Assembly = 0x0001,
 Module = 0x0002,
 Class = 0x0004,
 Struct = 0x0008,
 Enum = 0x0010,
 Constructor = 0x0020,
 Method = 0x0040,
 Property = 0x0080,
 Field = 0x0100,
 Event = 0x0200,
 Interface = 0x0400,
 Parameter = 0x0800,
 Delegate = 0x1000,
 ReturnValue = 0x2000,

 All = Assembly | Module | Class | Struct | Enum | Constructor |
 Method | Property | Field | Event | Interface | Parameter |
 Delegate | ReturnValue,

 ClassMembers = Class | Struct | Enum | Constructor | Method |
 Property | Field | Event | Delegate | Interface,
}

17.4.2 The Conditional attribute
The Conditional attribute enables the definition of conditional methods. The Conditional attribute
indicates a condition by testing a conditional compilation symbol. Calls to a conditional method are either
included or omitted depending on whether this symbol is defined at the point of the call. If the symbol is
defined, then the call is included; otherwise, the call is omitted.

[AttributeUsage(AttributeTargets.Method, AllowMultiple = true)]
public class ConditionalAttribute: Attribute
{
 public ConditionalAttribute(string conditionalSymbol) {...}

 public string ConditionalSymbol { get {...} }
}

A conditional method is subject to the following restrictions:

• The conditional method must be a method in a class-declaration.

• The conditional method must not be an override method.

• The conditional method must have a return type of void.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Chapter 17 Attributes

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 303

• The conditional method must not be marked with the override modifier. A conditional method may be
marked with the virtual modifier, however. Overrides of such a method are implicitly conditional, and
must not be explicitly marked with a Conditional attribute.

• The conditional method must not be an implementation of an interface method. Otherwise, a compile-time
error occurs.

In addition, a compile-time error occurs if a conditional method is used in a delegate-creation-expression. The
example

#define DEBUG

using System.Diagnostics;

class Class1
{
 [Conditional("DEBUG")]
 public static void M() {
 Console.WriteLine("Executed Class1.M");
 }
}

class Class2
{
 public static void Test() {
 Class1.M();
 }
}

declares Class1.M as a conditional method. Class2's Test method calls this method. Since the conditional
compilation symbol DEBUG is defined, if Class2.Test is called, it will call M. If the symbol DEBUG had not
been defined, then Class2.Test would not call Class1.M.

It is important to note that the inclusion or exclusion of a call to a conditional method is controlled by the
conditional compilation symbols at the point of the call. In the example

// Begin class1.cs
 using System.Diagnostics;

 class Class1
 {
 [Conditional("DEBUG")]
 public static void F() {
 Console.WriteLine("Executed Class1.F");
 }
 }
// End class1.cs

// Begin class2.cs
 #define DEBUG

 using System.Diagnostics;

 class Class2
 {
 public static void G {
 Class1.F(); // F is called
 }
 }
// End class2.cs

// Begin class3.cs
 #undef DEBUG

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

304 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 class Class3
 {
 public static void H {
 Class1.F(); // F is not called
 }
 }
// End class3.cs

the classes Class2 and Class3 each contain calls to the conditional method Class1.F, which is conditional
based on whether DEBUG is defined. Since this symbol is defined in the context of Class2 but not Class3, the
call to F in Class2 is included, while the call to F in Class3 is omitted.

17.4.3 The Obsolete attribute
The Obsolete attribute is used to mark program elements that should no longer be used.

[AttributeUsage(AttributeTargets.All)]
public class ObsoleteAttribute: Attribute
{

 public ObsoleteAttribute(string message) {...}

 public ObsoleteAttribute(string message, bool error) {...}

 public string Message { get {...} }

 public bool IsError { get {...} }
}

If a program uses a program element that is decorated with the Obsolete attribute, then the compiler shall issue a
warning or error in order to alert the developer, so the offending code can be fixed. Specifically, the compiler
shall issue a warning if no error parameter is provided, or if the error parameter is provided an d has the value
false. The compiler shall issue an error if the error parameter is specified and has the value true.

In the example
[Obsolete("This class is obsolete; use class B instead")]
class A
{
 public void F() {}
}

class B
{
 public void F() {}
}

class Test
{
 static void Main() {
 A a = new A(); // warning
 a.F();
 }
}

the class A is decorated with the Obsolete attribute. The use of A in Main results in a warning that includes the
specified message, ” This class is obsolete; use class B instead.„

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix A Unsafe code

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 305

A. Unsafe code

The core C# language, as defined in the preceding chapters, differs notably from C and C++ in its omission of
pointers as a data type. C# instead provides references and the ability to create objects that are managed by a
garbage collector. This design, coupled with other features, makes C# a much safer language than C or C++. In
the core C# language it is simply not possible to have an uninitialized variable, a ” dangling„ pointer, or an
expression that indexes an array beyond its bounds. Whole categories of bugs that routinely plague C and C++
programs are thus eliminated.

While practically every pointer type construct in C or C++ has a reference type counterpart in C#, there are
nonetheless situations where access to pointer types becomes a necessity. For example, interfacing with the
underlying operating system, accessing a memory-mapped device, or implementing a time-critical algorithm
may not be possible or practical without access to pointers. To address this need, C# provides the ability t o write
unsafe code.

In unsafe code it is possible to declare and operate on pointers, to perform conversions between pointers and
integral types, to take the address of variables, and so forth. In a sense, writing unsafe code is much like writing
C code within a C# program.

Unsafe code is in fact a ” safe„ feature from the perspective of both developers and users. Unsafe code must be
clearly marked with the modifier unsafe, so developers can§t possibly use unsafe features accidentally, and the
execution engine works to ensure that unsafe code cannot be executed in an untrusted environment.

A.1 Unsafe contexts
The unsafe features of C# are available only in unsafe contexts. An unsafe context is introduced by including an
unsafe modifier in the declaration of a type or member, or by employing an unsafe-statement:

• A declaration of a class, struct, interface, or delegate may include an unsafe modifier, in which case the
entire textual extent of that type declaration (including the body of the class, struct, or interf ace) is
considered an unsafe context.

• A declaration of a field, method, property, event, indexer, operator, constructor, static constructor, or
destructor may include an unsafe modifier, in which case the entire textual extent of that member
declaration is considered an unsafe context.

• An unsafe-statement enables the use of an unsafe context within a block. The entire textual extent of the
associated block is considered an unsafe context.

The associated grammar extensions are shown below. For brevity, ellipses (...) are used to represent productions
that appear in preceding chapters.

class-modifier:
...
unsafe

struct-modifier:
...
unsafe

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

306 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

interface-modifier:
...
unsafe

delegate-modifier:
...
unsafe

field-modifier:
...
unsafe

method-modifier:
...
unsafe

property-modifier:
...
unsafe

event-modifier:
...
unsafe

indexer-modifier:
...
unsafe

operator-modifier:
...
unsafe

constructor-modifier:
...
unsafe

destructor-declaration:
attributesopt unsafeopt ~ identifier () block

static-constructor-declaration:
attributesopt unsafeopt static identifier () block

embedded-statement:
...
unsafe-statement

unsafe-statement:
unsafe block

In the example
public unsafe struct Node
{
 public int Value;
 public Node* Left;
 public Node* Right;
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix A Unsafe code

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 307

the unsafe modifier specified in the struct declaration causes the entire textual extent of the struct declaration
to become an unsafe context. Thus, it is possible to declare the Left and Right fields to be of a pointer type.
The example above could also be written

public struct Node
{
 public int Value;
 public unsafe Node* Left;
 public unsafe Node* Right;
}

Here, the unsafe modifiers in the field declarations cause those declarations to be considered unsafe contexts.

Other than establishing an unsafe context, thus permitting the use of pointer types, the unsafe modifier has no
effect on a type or a member. In the example

public class A
{
 public unsafe virtual void F() {
 char* p;
 ...
 }
}

public class B: A
{
 public override void F() {
 base.F();
 ...
 }
}

the unsafe modifier on the F method in A simply causes the textual extent of F to become an unsafe context in
which the unsafe features of the language can be used. In the override of F in B, there is no need to re-specify the
unsafe modifier’ unless, of course, the F method in B itself needs access to unsafe features.

The situation is slightly different when a pointer type is part of the method§s signature
public unsafe class A
{
 public virtual void F(char* p) {...}
}

public class B: A
{
 public unsafe override void F(char* p) {...}
}

Here, because F§s signature includes a pointer type, it can only be written in an unsafe context. However, the
unsafe context can be introduced by either making the entire class unsafe, as is the case in A, or by including an
unsafe modifier in the method declaration, as is the case in B.

A.2 Pointer types
In an unsafe context, a type (−4) may be a pointer-type as well as a value-type or a reference-type.

type:
value-type
reference-type
pointer-type

A pointer-type is written as an unmanaged-type or the keyword void, followed by a * token:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

308 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

pointer-type:
unmanaged-type *
void *

unmanaged-type:
type

The type specified before the * in a pointer type is called the referent type of the pointer type. It represents the
type of the variable to which a value of the pointer type points.

Unlike references (values of reference types), pointers are not tracked by the garbage collector ’ the garbage
collector has no knowledge of pointers and the data to which they point. For this reason a pointer is not
permitted to point to a reference or to a structure that contains references, and the referent type of a pointer must
be an unmanaged-type.

An unmanaged-type is any type that isn§t a reference-type and doesn§t contain reference-type fields at any level
of nesting. In other words, an unmanaged-type is one of the following:

• sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, or bool.

• Any enum-type.

• Any pointer-type.

• Any user-defined struct-type that contains fields of unmanaged-types only.

The intuitive rule for mixing of pointers and references is that referents of references (objects) are permitted to
contain pointers, but referents of pointers are not permitted to contain references.

Some examples of pointer types are given in the table below:

Example Description
byte* Pointer to byte
char* Pointer to char
int** Pointer to pointer to int
int*[] Single-dimensional array of pointers to int
void* Pointer to unknown type

For a given implementation, all pointer types must have the same size and representation.

Unlike C and C++, when multiple pointers are declared in the same declaration, in C# the * is written along
with the underlying type only, not as a prefix punctuator on each pointer name. The example

int* pi, pj; // NOT as int *pi, *pj;

declares two variables, named pi and pj, of type int*.

The value of a pointer having type T* represents the address of a variable of type T. The pointer indirection
operator * (A.5.1) may be used to access this variable. For example, given a variable P of type int*, the
expression *P denotes the int variable found at the address contained in P.

Like an object reference, a pointer may be null. Applying the indirection operator to a null pointer results in
implementation-defined behavior. A pointer with the value null is represented by all-bits-zero.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix A Unsafe code

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 309

The void* type represents a pointer to an unknown type. Because the referent type is unknown, the indirection
operator cannot be applied to a pointer of type void*, nor can any arithmetic be performed on such a pointer.
However, a pointer of type void* can be cast to any other pointer type (and vice versa).

Pointer types are a separate category of types. Unlike reference types and va lue types, pointer types do not
inherit from object and no conversions exist between pointer types and object. In particular, boxing and
unboxing (−4.3) are not supported for pointers. However, conversions are permitted between different pointer
types and between pointer types and the integral types. This is described in −A.4.

Although pointers can be passed as ref or out parameters, doing so can cause undefined behavior, since the
pointer may well be set to point to a local variable which no longer exists when the called method returns, or the
fixed object to which it used to point, is no longer fixed. For example:

class Test
{
 static int value = 20;

 unsafe static void F(out int* pi1, ref int* pi2) {
 int i = 10;
 pi1 = &i;

 fixed (int* pj = &value) {
 // ...
 pi2 = pj;
 }
 }

 unsafe static void Main() {
 int* px1;
 int i = 10;
 int* px2 = &i;

 F(out px1, ref px2);
 Console.WriteLine("*px1 = {0}, *px2 = {1}",
 *px1, *px2); // undefined behavior
 }
}

A method can return a value of some type, and that type can be a pointer. For example, when given a pointer to
a contiguous sequence of int values, the sequence's element count, and some other int value, the following
method returns the address of the indicated value in that array, if a match occurs; otherwise it returns null:

unsafe static int* Find(int* pi, int size, int value) {
 for (int i = 0; i < size; ++i) {
 if (*pi == value)
 return pi;
 ++pi;
 }
 return null;
}

In an unsafe context, several constructs are available for operating on pointers:

• The * operator may be used to perform pointer indirection (−A.5.1).

• The -> operator may be used to access a member of a struct through a pointer (−A.5.2).

• The [] operator may be used to index a pointer (−A.5.3).

• The & operator may be used to obtain the address of a variable (−A.5.4).

• The ++ and -- operators may be used to increment and decrement pointers (−A.5.5).

• The + and - operators may be used to perform pointer arithmetic (−A.5.6).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

310 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

• The ==, !=, <, >, <=, and => operators may be used to compare pointers (−A.5.7).

• The stackalloc operator may be used to allocate memory from the call stack (−A.7).

• The fixed statement may be used to temporarily fix a variable so its address can be obtained (−A.6).

A.3 Fixed and moveable variables
The address-of operator (−A.5.4) and the fixed statement (−A.6) divide variables into two categories: Fixed
variables and moveable variables.

Fixed variables reside in storage locations that are unaffected by operation of the garbage collector. Examples of
fixed variables include local variables, value parameters, and variables created by dereferencing pointers.
Moveable variables on the other hand reside in storage locations that are subject to relocation or disposal by the
garbage collector. Examples of moveable variables include fields in objects and elements of arrays.

The & operator (−A.5.4) permits the address of a fixed variable to be obtained without restrictions. However,
because a moveable variable is subject to relocation or disposal by the garbage collector, the address of a
moveable variable can only be obtained using a fixed statement (−A.6), and the address remains valid only for
the duration of that fixed statement.

In precise terms, a fixed variable is one of the following:

• A variable resulting from a simple-name (−7.5.2) that refers to a local variable or a value parameter.

• A variable resulting from a member-access (−7.5.4) of the form V.I, where V is a fixed variable of a struct-
type.

• A variable resulting from a pointer-indirection-expression (−A.5.1) of the form *P, a pointer-member-
access (−A.5.2) of the form P->I, or a pointer-element-access (−A.5.3) of the form P[E].

All other variables are classified as moveable variables.

Note that a static field is classified as a moveable variable. Also note that a ref or out parameter is classified as
a moveable variable, even if the argument given for the parameter is a fixed variable. Finally, note that a
variable produced by dereferencing a pointer is always classified as a fixed variable.

A.4 Pointer conversions
In an unsafe context, the set of available implicit and explicit conversions is extended to include pointer types as
described in this section.

Implicit pointer conversions can occur in a variety of situations within unsafe contexts, including function
member invocations (−7.4.3), cast expressions (−7.6.8), and assignments (−7.13). The implicit pointer
conversions are:

• From any pointer-type to the type void*.

• From the null type to any pointer-type.

Explicit pointer conversions can occur only in cast expressions (−7.6.8) within unsafe contexts. The explicit
pointer conversions are:

• From any pointer-type to any other pointer-type.

• From sbyte, byte, short, ushort, int, uint, long, or ulong to any pointer-type.

• From any pointer-type to sbyte, byte, short, ushort, int, uint, long, or ulong.

For further details on implicit and explicit conversions, see −6.1 and −6.2.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix A Unsafe code

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 311

Conversions between two pointer types never change the actual pointer value. In other words, a conversion from
one pointer type to another has no effect on the underlying address given by the pointer.

When one pointer type is converted to another, if the resulting pointer is not correctly aligned for the pointed -to
type, the behavior is undefined if the result is dereferenced. In general, the concept ” correctly aligned„ is
transitive: if a pointer to type A is correctly aligned for a pointer to type B, which, in turn, is correctly aligned for
a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

Consider the following case in which a variable having one type is accessed via a pointer to a different type:
char c = 'A';
char* pc = &c;
void* pv = pc;
int* pi = (int*)pv;
int i = *pi; // undefined
*pi = 123456; // undefined

When a pointer type is converted to a pointer to byte, the result points to the lowest addressed byte of the
variable. Successive increments of the result, up to the size of the variable, yield pointers to the remaining bytes
of that variable. For example, the following method displays each of the eight bytes in a double as a
hexadecimal value:

class Test
{
 unsafe static void Main() {
 double d = 123.456e23;
 byte* pb = (byte*)&d;
 for (int i = 0; i < sizeof(double); ++i)
 Console.Write(" {0,2:X}", (uint)(*pb++));
 }
}

Of course, the output produced depends on the endianness of a double.

Mappings between pointers and integers are implementation-defined. However, on 32- and 64-bit CPU
architectures with a linear address space, conversions of pointers to or from integral types typically behave
exactly like a conversion of uint or ulong values, respectively, to or from those integral types.

A.5 Pointers in expressions
In an unsafe context an expression may yield a result of a pointer type, but outside an unsafe context it is an
error for an expression to be of a pointer type. In precise terms, outside an unsafe context an error occurs if any
simple-name (−7.5.2), member-access (−7.5.4), invocation-expression (−7.5.5), or element-access (−7.5.6) is of a
pointer type.

In an unsafe context, the primary-expression-no-array-creation (−7.5) and unary-expression (−7.6) productions
permit the following additional constructs:

primary-expression-no-array-creation:
...
pointer-member-access
pointer-element-access
sizeof-expression

unary-expression:
...
pointer-indirection-expression
addressof-expression

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

312 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

These constructs are described in the following sections. The precedence and associativity of the unsafe
operators is implied by the grammar.

A.5.1 Pointer indirection
A pointer-indirection-expression consists of an asterisk (*) followed by a unary-expression.

pointer-indirection-expression:
* unary-expression

The unary * operator denotes pointer indirection and is used to obtain the variable to which a pointer points.
The result of evaluating *P, where P is an expression of a pointer type T*, is a variable of type T. It is an error to
apply the unary * operator to an expression of type void* or to an expression that isn§t of a pointer type.

The effect of applying the unary * operator to a null pointer is implementation-defined. In particular, there is
no guarantee that this operation throws a System.NullReferenceException.

If an invalid value has been assigned to the pointer, the behavior of the unary * operator is undefined. Among
the invalid values for dereferencing a pointer by the unary * operator are an address inappropriately aligned for
the type pointed to (see example in −A.4), and the address of a variable after the end of its lifetime.

For purposes of definite assignment analysis, a variable produced by evaluating an expression of the form *P is
considered initially assigned (−5.3.1).

A.5.2 Pointer member access
A pointer-member-access consists of a primary-expression, followed by a ” ->„ token, followed by an identifier.

pointer-member-access:
primary-expression -> identifier

In a pointer member access of the form P->I, P must be an expression of a pointer type other than void*, and I
must denote an accessible member of the type to which P points.

A pointer member access of the form P->I is evaluated exactly as (*P).I. For a description of the pointer
indirection operator (*), see −A.5.1. For a description of the member access operator (.), see −7.5.4.

In the example
struct Point
{
 public int x;
 public int y;

 public override string ToString() {
 return "(" + x + "," + y + ")";
 }
}

class Test
{
 unsafe static void Main() {
 Point point;
 Point* p = &point;
 p->x = 10;
 p->y = 20;
 Console.WriteLine(p->ToString());
 }
}

the -> operator is used to access fields and invoke a method of a struct through a pointer. Because the operation
P->I is precisely equivalent to (*P).I, the Main method could equally well have been written:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix A Unsafe code

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 313

class Test
{
 unsafe static void Main() {
 Point point;
 Point* p = &point;
 (*p).x = 10;
 (*p).y = 20;
 Console.WriteLine((*p).ToString());
 }
}

A.5.3 Pointer element access
A pointer-element-access consists of a primary-expression followed by an expression enclosed in ” [„ and ”]„ .

pointer-element-access:
primary-expression-no-array-creation [expression]

In a pointer element access of the form P[E], P must be an expression of a pointer type other than void*, and E
must be an expression of a type that can be implicitly converted to int, uint, long, or ulong.

A pointer element access of the form P[E] is evaluated exactly as *(P + E). For a description of the pointer
indirection operator (*), see −A.5.1. For a description of the pointer addition operator (+), see −A.5.6.

In the example
class Test
{
 unsafe static void Main() {
 char* p = stackalloc char[256];
 for (int i = 0; i < 256; i++) p[i] = (char)i;
 }
}

a pointer element access is used to initialize the character buffer in a for loop. Because the operation P[E] is
precisely equivalent to *(P + E), the example could equally well have been written:

class Test
{
 unsafe static void Main() {
 char* p = stackalloc char[256];
 for (int i = 0; i < 256; i++) *(p + i) = (char)i;
 }
}

The pointer element access operator does not check for out-of-bounds errors and the effects of accessing an out-
of-bounds element are undefined.

A.5.4 The address-of operator
An addressof-expression consists of an ampersand (&) followed by a unary-expression.

addressof-expression:
& unary-expression

Given an expression E which is of a type T and is classified as a fixed variable (−A.3), the construct &E
computes the address of the variable given by E. The type of the result is T* and is classified as a value. An error
occurs if E is not classified as a variable, if E is classified as a volatile field, or if E denotes a moveable variable.
In the last case, a fixed statement (−A.6) can be used to temporarily ” fix„ the variable before obtaining its
address.

The & operator does not require its argument to be definitely assigned, but following an & operation, the variable
to which the operator is applied is considered definitely assigned in the execution path in which the operation

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

314 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

occurs. It is the responsibility of the programmer to ensure that correct initialization of the variable actually does
take place in this situation.

In the example
unsafe class Test
{
 static void Main() {
 int i;
 int* p = &i;
 *p = 123;
 Console.WriteLine(i);
 }
}

i is considered definitely assigned following the &i operation used to initialize p. The assignment to *p in
effect initializes i, but the inclusion of this initialization is the responsibility of the programmer, and no
compile-time error would occur if the assignment was removed.

The rules of definite assignment for the & operator exist such that redundant initialization of local variables can
be avoided. For example, many external APIs take a pointer to a structure which is filled in by the API. Calls to
such APIs typically pass the address of a local struct variable, and without the rule, redundant initialization of
the struct variable would be required.

As stated earlier (−7.5.4), outside an instance constructor or static constructor for a struct or class that defines a
readonly field, that field is considered a value, not a variable. As such, its address cannot be taken. Similarly,
the address of a constant cannot be taken.

A.5.5 Pointer increment and decrement
In an unsafe context, the ++ and -- operators (−7.5.9 and −7.6.7) can be applied to pointer variables of all types
except void*. Thus, for every pointer type T*, the following operators are implicitly defined:

T* operator ++(T* x);

T* operator --(T* x);

The operators produce the same results asx+1 and x-1, respectively (−A.5.6). In other words, for a pointer
variable of type T*, the ++ operator adds sizeof(T) to the address contained in the variable, and the --
operator subtracts sizeof(T) from the address contained in the variable.

If a pointer increment or decrement operation overflows the domain of the pointer type, the result is truncated in
an implementation-defined fashion, but no exceptions are produced.

A.5.6 Pointer arithmetic
In an unsafe context, the + and - operators (−7.7.4 and −7.7.5) can be applied to values of all pointer types
except void*. Thus, for every pointer type T*, the following operators are implicitly defined:

T* operator +(T* x, int y);
T* operator +(T* x, uint y);
T* operator +(T* x, long y);
T* operator +(T* x, ulong y);

T* operator +(int x, T* y);
T* operator +(uint x, T* y);
T* operator +(long x, T* y);
T* operator +(ulong x, T* y);

T* operator “(T* x, int y);
T* operator “(T* x, uint y);
T* operator “(T* x, long y);
T* operator “(T* x, ulong y);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix A Unsafe code

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 315

long operator “(T* x, T* y);

Given an expression P of a pointer type T* and an expression N of type int, uint, long, or ulong, the
expressions P + N and N + P compute the pointer value of type T* that results from adding N * sizeof(T) to
the address given by P. Likewise, the expression P - N computes the pointer value of type T* that results from
subtracting N * sizeof(T) from the address given by P.

Given two expressions, P and Q, of a pointer type T*, the expression P “ Q computes the difference between the
addresses given by P and Q and then divides the difference by sizeof(T). The type of the result is always
long. In effect, P - Q is computed as ((long)(P) - (long)(Q)) / sizeof(T).

For example, this program:
class Test

{

 unsafe static void Main() {
 int* values = stackalloc int[20];
 int* p = &values[1];
 int* q = &values[15];
 Console.WriteLine("p - q = {0}", p - q);
 Console.WriteLine("q - p = {0}", q - p);
 }
}

produces the output:
p - q = -14
q - p = 14

If a pointer arithmetic operation overflows the domain of the pointer type, the result is truncated in an
implementation-defined fashion, but no exceptions are produced.

A.5.7 Pointer comparison
In an unsafe context, the ==, !=, <, >, <=, and => operators (−7.9) can be applied to values of all pointer types.
The pointer comparison operators are:

bool operator ==(void* x, void* y);

bool operator !=(void* x, void* y);

bool operator <(void* x, void* y);

bool operator >(void* x, void* y);

bool operator <=(void* x, void* y);

bool operator >=(void* x, void* y);

Because an implicit conversion exists from any pointer type to the void* type, operands of any pointer type can
be compared using these operators. The comparison operators compare the addresses given by the two operands
as if they were unsigned integers.

A.5.8 The sizeof operator
The sizeof operator returns the number of bytes occupied by a variable of a given type. The type specified as
an operand to sizeof must be an unmanaged-type (−A.2).

sizeof-expression:
sizeof (unmanaged-type)

The result of the sizeof operator is a value of type int. For certain predefined types, the sizeof operator
yields a constant value as shown in the table below.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

316 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

Expression Result
sizeof(sbyte) 1

sizeof(byte) 1

sizeof(short) 2

sizeof(ushort) 2

sizeof(int) 4

sizeof(uint) 4

sizeof(long) 8

sizeof(ulong) 8

sizeof(char) 2

sizeof(float) 4

sizeof(double) 8

sizeof(bool) 1

For all other types, the result of the sizeof operator is implementation-defined and is classified as a value, not
a constant.

The order in which non-function members are packed into a struct is undefined.

For alignment purposes, there may be unnamed padding at the beginning of a struct, within a struct, and at the
end of the struct. The contents of the bits used as padding are indeterminate.

When applied to an operand that has struct type, the result is the total number of bytes in a variable of that type,
including any padding.

A.6 The fixed statement
In an unsafe context, the embedded-statement (−8) production permits an additional construct, the fixed
statement, which is used to ” fix„ a moveable variable such that its address remains constant for the duration of
the statement.

embedded-statement:
...
fixed-statement

fixed-statement:
fixed (pointer-type fixed-pointer-declarators) embedded-statement

fixed-pointer-declarators:
fixed-pointer-declarator
fixed-pointer-declarators , fixed-pointer-declarator

fixed-pointer-declarator:
identifier = fixed-pointer-initializer

fixed-pointer-initializer:
& variable-reference
expression

Each fixed-pointer-declarator declares a local variable of the given pointer-type and initializes the local variable
with the address computed by the corresponding fixed-pointer-initializer. A local variable declared in a fixed

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix A Unsafe code

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 317

statement is accessible in any fixed-pointer-initializers occurring to the right of the declaration, and in the
embedded-statement of the fixed statement. A local variable declared by a fixed statement is considered
read-only and cannot be assigned to or passed as a ref or out parameter.

A fixed-pointer-initializer can be one of the following:

• The token ” &„ followed by a variable-reference (−5.4) to a moveable variable (−A.3) of an unmanaged type
T, provided the type T* is implicitly convertible to the pointer type given in the fixed statement. In this
case, the initializer computes the address of the given variable, and the variable is guaranteed to remain at a
fixed address for the duration of the fixed statement.

• An expression of an array-type with elements of an unmanaged type T, provided the type T* is implicitly
convertible to the pointer type given in the fixed statement. In this case, the initializer computes the
address of the first element in the array, and the entire array is guaranteed to remain at a fixed address for
the duration of the fixed statement. A System.NullReferenceException is thrown if the array
expression is null; a System.IndexOutOfRangeException is thrown if the array has no elements.

• An expression of type string, provided the type char* is implicitly convertible to the pointer type given
in the fixed statement. In this case, the initializer computes the address of the first character in the string,
and the entire string is guaranteed to remain at a fixed address for the duration of the fixed statement. A
System.NullReferenceException is thrown if the string expression is null.

For each address computed by a fixed-pointer-initializer the fixed statement ensures that the variable
referenced by the address is not subject to relocation or disposal by the garbage collector for the duration of the
fixed statement. For example, if the address computed by a fixed-pointer-initializer references a field of an
object or an element of an array instance, the fixed statement guarantees that the containing object instance is
not relocated or disposed of during the lifetime of the statement.

It is the programmer§s responsibility to ensure that pointers created by fixed statements do not survive beyond
execution of those statements. This for example means that when pointers created by fixed statements are
passed to external APIs, it is the programmer§s responsibility to ensure that the APIs retain no memory of these
pointers.

The fixed statement is typically implemented by generating tables that describe to the garbage collector which
objects are to remain fixed in which regions of executable code. Thus, as long as a garbage collection process
doesn§t actually occur during execution of a fixed statement, there is very little cost associated with the
statement. However, when a garbage collection process does occur, fixed objects may cause fragmentation of
the heap (because they can§t be moved). For that reason, objects should be fixed only when absolutely necessary
and then only for the shortest amount of time possible.

The example
unsafe class Test
{
 static int x;
 int y;

 static void F(int* p) {
 *p = 1;
 }

 static void Main() {
 Test t = new Test();
 int[] arr = new int[10];
 fixed (int* p = &x) F(p);
 fixed (int* p = &t.y) F(p);
 fixed (int* p = &arr[0]) F(p);
 fixed (int* p = arr) F(p);
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

318 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

demonstrates several uses of the fixed statement. The first statement fixes and obtains the address of a static
field, the second statement fixes and obtains the address of an instance field, and the third statement fixes and
obtains the address of an array element. In each case it would have been an error to use the regular & operator
since the variables are all classified as moveable variables.

The third and fourth fixed statements in the example above produce identical results. In general, for an array
instance arr, specifying &arr[0] in a fixed statement is the same as simply specifying arr.

Here§s another example of the fixed statement, this time using string:
class Test
{
 static string name = "xx";

 unsafe static void F(char* p) {
 for (int i = 0; p[i] != '\0'; ++i)
 Console.WriteLine(p[i]);
 }

 unsafe static void Main() {
 fixed (char* p = name) F(p);
 fixed (char* p = "xx") F(p);
 }
}

Within a fixed statement that obtains a pointer p to an array instance a, the pointer values ranging from p to p
+ arr.Length - 1 represent addresses of the elements in the array. Likewise, the variables ranging from p[0]
to p[arr.Length - 1] represent the actual array elements. Given the way in which arrays are stored
(−7.5.10.2), we can treat an array of any dimension as though it were linear.

The example
using System;
class Test
{
 static void Main() {
 int[,,] a = new int[2,3,4];
 unsafe {
 fixed (int* p = a) {
 for (int i = 0; i < a.Length; ++i) // treat as linear
 p[i] = i;
 }
 }

 for (int i = 0; i < 2; ++i)
 for (int j = 0; j < 3; ++j) {
 for (int k = 0; k < 4; ++k)
 Console.Write("[{0},{1},{2}] = {3,2} ", i, j, k, a[i,j,k]);
 Console.WriteLine();
 }
 }
}

produces the output:
[0,0,0] = 0 [0,0,1] = 1 [0,0,2] = 2 [0,0,3] = 3
[0,1,0] = 4 [0,1,1] = 5 [0,1,2] = 6 [0,1,3] = 7
[0,2,0] = 8 [0,2,1] = 9 [0,2,2] = 10 [0,2,3] = 11
[1,0,0] = 12 [1,0,1] = 13 [1,0,2] = 14 [1,0,3] = 15
[1,1,0] = 16 [1,1,1] = 17 [1,1,2] = 18 [1,1,3] = 19
[1,2,0] = 20 [1,2,1] = 21 [1,2,2] = 22 [1,2,3] = 23

In the example

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix A Unsafe code

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 319

unsafe class Test
{
 static void Fill(int* p, int count, int value) {
 for (; count != 0; count--) *p++ = value;
 }

 static void Main() {
 int[] arr = new int[100];
 fixed (int* p = arr) Fill(p, 100, -1);
 }
}

a fixed statement is used to fix an array so its address can be passed to a method that takes a pointer.

A char* value produced by fixing a string instance always points to a null-terminated string. Within a fixed
statement that obtains a pointer p to a string instance s, the pointer values ranging from p to p + s.Length - 1
represent addresses of the characters in the string, and the pointer value p + s.Length always points to a null
character (the character with value '\0').

Because strings are immutable, it is the programmer§s responsibility to ensure that the characters referenced by a
pointer to a fixed string are not modified.

The automatic null-termination of strings is particularly convenient when calling external APIs that expect ” C-
style„ strings. Note, however, that a string instance is permitted to contain null characters. If such null characters
are present, the string will appear truncated when treated as a null -terminated char*.

A.7 Stack allocation
In an unsafe context, a local variable declaration (−8.5.1) may include a stack allocation initializer which
allocates memory from the call stack.

variable-initializer:
expression
array-initializer
stackalloc-initializer

stackalloc-initializer:
stackalloc unmanaged-type [expression]

The unmanaged-type indicates the type of the items that will be stored in the newly allocated location, and the
expression indicates the number of these items. Taken together, these specify the required allocation size. Since
the size of a stack allocation cannot be negative, it is an error to specify the number of items as a constant-
expression that evaluates to a negative value. The size of a stack allocation may be zero, and in such a case no
allocation is made at all.

A stack allocation initializer of the form stackalloc T[E] requires T to be an unmanaged type (−A.2) and E to
be an expression of type int. The construct allocates E * sizeof(T) bytes from the call stack and produces a
pointer, of type T*, to the newly allocated block. If E is a negative value, then the behavior is undefined. If there
is not enough memory available to allocate a block of the given size, a System.StackOverflowException
is thrown.

The content of the newly allocated memory is undefined.

There is no way to explicitly free memory allocated using stackalloc. Instead, all stack allocated memory
blocks created during the execution of a function member are automatically discarded when the function
member returns. This corresponds to the alloca function, an extension commonly found in C and C++
implementations.

Stack allocation initializers are not permitted in catch or finally blocks (−8.10).

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

320 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

In the example
class Test
{
 unsafe static string IntToString(int value) {
 char* buffer = stackalloc char[16];
 char* p = buffer + 16;
 int n = value >= 0? value: -value;
 do {
 *--p = (char)(n % 10 + '0');
 n /= 10;
 } while (n != 0);
 if (value < 0) *--p = '-';
 return new string(p, (int)(buffer + 16 - p));
 }

 static void Main() {
 Console.WriteLine(IntToString(12345));
 Console.WriteLine(IntToString(-999));
 }
}

a stackalloc initializer is used in the IntToString method to allocate a buffer of 16 characters on the stack.
The buffer is automatically discarded when the method returns.

A.8 Dynamic memory allocation
Except for the stackalloc operator, C# provides no predefined constructs for managing non-garbage collected
memory. Such services are typically provided by supporting class libraries or imported directly from the
underlying operating system. For example, the Memory class below illustrates how the Heap Functions of the
Windows API can be accessed from C#:

using System;
using System.Runtime.InteropServices;

public unsafe class Memory
{
 // Handle for the process heap. This handle is used in all calls to the
 // HeapXXX APIs in the methods below.

 static int ph = GetProcessHeap();

 // Private instance constructor to prevent instantiation.

 private Memory() {}

 // Allocates a memory block of the given size. The allocated memory is
 // automatically initialized to zero.

 public static void* Alloc(int size) {
 void* result = HeapAlloc(ph, HEAP_ZERO_MEMORY, size);
 if (result == null) throw new OutOfMemoryException();
 return result;
 }

 // Copies count bytes from src to dst. The source and destination
 // blocks are permitted to overlap.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix A Unsafe code

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 321

 public static void Copy(void* src, void* dst, int count) {
 byte* ps = (byte*)src;
 byte* pd = (byte*)dst;
 if (ps > pd) {
 for (; count != 0; count--) *pd++ = *ps++;
 }
 else if (ps < pd) {
 for (ps += count, pd += count; count != 0; count--) *--pd = *--ps;
 }
 }

 // Frees a memory block.

 public static void Free(void* block) {
 if (!HeapFree(ph, 0, block)) throw new InvalidOperationException();
 }

 // Re-allocates a memory block. If the reallocation request is for a
 // larger size, the additional region of memory is automatically
 // initialized to zero.

 public static void* ReAlloc(void* block, int size) {
 void* result = HeapReAlloc(ph, HEAP_ZERO_MEMORY, block, size);
 if (result == null) throw new OutOfMemoryException();
 return result;
 }

 // Returns the size of a memory block.

 public static int SizeOf(void* block) {
 int result = HeapSize(ph, 0, block);
 if (result == -1) throw new InvalidOperationException();
 return result;
 }

 // Heap API flags

 const int HEAP_ZERO_MEMORY = 0x00000008;

 // Heap API functions

 [DllImport("kernel32")]
 static extern int GetProcessHeap();

 [DllImport("kernel32")]
 static extern void* HeapAlloc(int hHeap, int flags, int size);

 [DllImport("kernel32")]
 static extern bool HeapFree(int hHeap, int flags, void* block);

 [DllImport("kernel32")]
 static extern void* HeapReAlloc(int hHeap, int flags,
 void* block, int size);

 [DllImport("kernel32")]
 static extern int HeapSize(int hHeap, int flags, void* block);
}

An example that uses the Memory class is given below:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

322 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

class Test
{
 unsafe static void Main() {
 byte* buffer = (byte*)Memory.Alloc(256);
 for (int i = 0; i < 256; i++) buffer[i] = (byte)i;
 byte[] array = new byte[256];
 fixed (byte* p = array) Memory.Copy(buffer, p, 256);
 Memory.Free(buffer);
 for (int i = 0; i < 256; i++) Console.WriteLine(array[i]);
 }
}

The example allocates 256 bytes of memory through Memory.Alloc and initializes the memory block with
values increasing from 0 to 255. It then allocates a 256 element byte array and uses Memory.Copy to copy the
contents of the memory block into the byte array. Finally, the memory block is freed using Memory.Free and
the contents of the byte array are output on the console.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix B Interoperability

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 323

B. Interoperability

The attributes described in this chapter are used for creating programs that interoperate with COM programs.

B.1 The ComAliasName attribute
namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Parameter |
 AttributeTargets.ReturnValue)]
 public class ComAliasName: System.Attribute
 {
 public ComAliasNameAttribute(string value) {...}

 public string Value { get {...} }
 }
}

B.2 The ComImport attribute
When placed on a class, the ComImport attribute marks the class as an externally implemented Com class. Such
a class declaration enables the use of a C# name to refer to a COM class.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Class)]
 public class ComImportAttribute: System.Attribute
 {
 public ComImportAttribute() {...}
 }
}

A class that is decorated with the ComImport attribute is subject to the following restrictions:

• It must also be decorated with the Guid attribute, which specifies the CLSID for the COM class being
imported. A compile-time error occurs if a class declaration includes the ComImport attribute but fails to
include the Guid attribute.

• It must not have any members. (A public constructor with no parameters is automatically provided.)

• It must not derive from a class other than object.

The example
using System.Runtime.InteropServices;

[ComImport, Guid("00020810-0000-0000-C000-000000000046")]
class Worksheet {}

class Test
{
 static void Main() {
 Worksheet w = new Worksheet(); // Creates an Excel worksheet
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

324 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

declares a class Worksheet as a class imported from COM that has a CLSID of ” 00020810-0000-0000-
C000-000000000046„ . Instantiating a Worksheet instance causes a corresponding COM instantiation.

B.3 The ComRegisterFunction attribute
The presence of the ComRegisterFunction attribute on a method indicates that the method should be called
during the COM registration process.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Method)]
 public class ComRegisterFunctionAttribute: System.Attribute
 {
 public ComRegisterFunctionAttribute() {...}

 }
}

B.4 The ComSourceInterfaces attribute
The ComSourceInterfaces attribute is used to list the source interfaces on the imported coclass.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Class)]
 public class ComSourceInterfacesAttribute: System.Attribute
 {
 public ComSourceInterfacesAttribute(string value) {...}

 public string Value { get {...} }
 }
}

B.5 The ComUnregisterFunction attribute
The presence of the ComUnregisterFunction attribute on a method indicates that the method should be
called when the assembly is unregistered for use in COM.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Method)]
 public class ComUnregisterFunctionAttribute: System.Attribute
 {
 public ComUnregisterFunctionAttribute() {...}

 }
}

B.6 The ComVisible attribute
The ComVisible attribute is used to specify whether or not a class or interface is visible in COM.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Class |
 AttributeTargets.Interface |
 AttributeTargets.Method)]
 public class ComVisibleAttribute: System.Attribute
 {
 public ComVisibleAttribute(bool value) {...}

 public bool Value { get {...} }
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix B Interoperability

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 325

B.7 The DispId attribute
The DispId attribute is used to specify an OLE Automation DISPID. A DISPID is an integral value that
identifies a member in a dispinterface.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Field |
 AttributeTargets.Property)]
 public class DispIdAttribute: System.Attribute
 {
 public DispIdAttribute(int value) {...}

 public int Value { get {...} }
 }
}

B.8 The DllImport attribute
The DllImport attribute is used to specify the dll location that contains the implementation o f an extern
method.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Method)]
 public class DllImportAttribute: System.Attribute
 {
 public DllImportAttribute(string dllName) {...}

 public CallingConvention CallingConvention;

 public CharSet CharSet;

 public string EntryPoint;

 public bool ExactSpelling;

 public bool PreserveSig;

 public bool SetLastError;

 public string Value { get {...} }

 }
}

Specifically, the DllImport attribute has the following behaviors:

• It can only be placed on method declarations.

• It has a single positional parameter: a dllName parameter that specifies name of the dll in which the
imported method can be found.

• It has five named parameters:

o The CallingConvention parameter indicates the calling convention for the entry point. If no
CallingConvention is specified, a default of CallingConvention.Winapi is used.

o The CharSet parameter indicates the character set used in the entry point. If no CharSet is specified, a
default of CharSet.Auto is used.

o The EntryPoint parameter gives the name of the entry point in the dll. If no EntryPoint is
specified, then the name of the method itself is used.

o The ExactSpelling parameter indicates whether EntryPoint must exactly match the spelling of the
indicated entry point. If no ExactSpelling is specified, a default of false is used.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

326 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

o The PreserveSig parameter indicates whether the signature of the method should be preserved or
transformed. When a signature is transformed, it is transformed to one having an HRESULT retur n
value and an additional out parameter named retval for the return value. If no PreserveSig value is
specified, a default of true is used.

o The SetLastError parameter indicates whether the method preserves the Win32 ” last error„ . If no
SetLastError is specified, a default of false is used.

• It is a single-use attribute class.

In addition, a method that is decorated with the DllImport attribute must have the extern modifier.

B.9 The FieldOffset attribute
The FieldOffset attribute is used to specify the layout of fields for the struct.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Field)]
 public class FieldOffsetAttribute: System.Attribute
 {
 public FieldOffsetAttribute(int value) {...}

 public int Value { get {...} }
 }
}

The FieldOffset attribute may not be placed on a field declarations that is a member of a class.

B.10 The Guid attribute
The Guid attribute is used to specify a globally unique identifier (GUID) for a class or an interface. This
information is primarily useful for interoperability with COM.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Assembly
 | AttributeTargets.Class
 | AttributeTargets.Interface
 | AttributeTargets.Enum
 | AttributeTargets.Delegate
 | AttributeTargets.Struct)]
 public class GuidAttribute: System.Attribute
 {
 public GuidAttribute(string value) {...}

 public string Value { get {...} }
 }
}

The format of the positional string argument is verified at compile -time. It is an error to specify a string
argument that is not a syntactically valid GUID.

B.11 The HasDefaultInterface attribute
If present, the HasDefaultInterface attribute indicates that a class has a default interface.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix B Interoperability

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 327

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Class)]
 public class HasDefaultInterfaceAttribute: System.Attribute
 {
 public HasDefaultInterfaceAttribute() {...}
 }
}

B.12 The ImportedFromTypeLib attribute
The ImportedFromTypeLib attribute is used to specify that an assembly was imported from a COM type
library.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Assembly)]
 public class ImportedFromTypeLib: System.Attribute
 {
 public ImportedFromTypeLib(string value) {...}

 public string Value { get {..} }

 }
}

B.13 The In and Out attributes
The In and Out attributes are used to provide custom marshalling information for parameters. All combinations
of these marshalling attributes are permitted.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Parameter)]
 public class InAttribute: System.Attribute
 {
 public InAttribute() {...}
 }

 [AttributeUsage(AttributeTargets.Parameter)]
 public class OutAttribute: System.Attribute
 {
 public OutAttribute() {...}
 }
}

If a parameter is not decorated with either marshalling attribute, then it is marshalled based on the its parameter-
modifiers, as follows. If the parameter has no modifiers then the marshalling is [In]. If the parameter has the
ref modifier then the marshalling is [In, Out]. If the parameter has the out modifier then the marshalling is
[Out].

Note that out is a keyword, and Out is an attribute. The example
class Class1
{
 void M([Out] out int i) {
 ...
 }
}

shows that the use of out as a parameter-modifier and the use of Out in an attribute.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

328 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

B.14 The IndexerName attribute
Indexers are implemented in some systems using indexed properties. If no IndexerName attribute is present for
an indexer, then the name Item is used by default. The IndexerName attribute enables a developer to override
this default and specify a different name.

namespace System.Runtime.CompilerServices.CSharp
{
 [AttributeUsage(AttributeTargets.Property)]
 public class IndexerNameAttribute: System.Attribute
 {
 public IndexerNameAttribute(string indexerName) {...}

 public string Value { get {...} }
 }
}

B.15 The InterfaceType attribute
When placed on an interface, the InterfaceType attribute specifies the manner in which the interface is
treated in COM.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Interface)]
 public class InterfaceTypeAttribute: System.Attribute
 {
 public InterfaceTypeAttribute(ComInterfaceType value) {...}

 public ComInterfaceType Value { get {...} }
 }
}

B.16 The MarshalAs attribute
The MarshalAs attribute is used to describe the marshalling format for a field, method, or parameter.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Method |
 AttributeTargets.Parameter |
 AttributeTargets.Field)]
 public class MarshalAsAttribute: System.Attribute
 {
 public MarshalAsAttribute(UnmanagedType unmanagedType) {...}

 public UnmanagedType ArraySubType;

 public string MarshalCookie;

 public string MarshalType;

 public VarEnum SafeArraySubType;

 public int SizeConst;

 public short SizeParamIndex;

 public int SizeParamMultiplier;
 }
}

B.17 The NoIDispatch attribute
The presence of the NoIDispatch attribute indicates that the class or interface should derive from IUnknown
rather than IDispatch when exported to COM.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix B Interoperability

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 329

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
 public class NoIDispatchAttribute: System.Attribute
 {
 public NoIDispatchAttribute() {...}
 }
}

B.18 The PreserveSig attribute
The PreserveSig attribute is used to indicate that the HRESULT/retval signature transformation that
normally takes place during interoperability calls should be suppressed.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Method | AttributeTargets.Property)]
 public class PreserveSigAttribute: System.Attribute
 {
 public PreserveSigAttribute(bool value) {...}

 public bool Value { get {...} }
 }
}

B.19 The StructLayout attribute
The StructLayout attribute is used to specify the layout of fields for the struct.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Class | AttributeTargets.Struct)]
 public class StructLayoutAttribute: System.Attribute
 {
 public StructLayoutAttribute(LayoutKind value) {...}

 public CharSet CharSet;

 public bool CheckFastMarshal;

 public int Pack;

 public LayoutKind Value { get {...} }
 }
}

If LayoutKind.Explicit is specified, then every field in the struct must have the FieldOffset attribute. If
LayoutKind.Explicit is not specified, then use of the FieldOffset attribute is prohibited.

B.20 The TypeLibFunc attribute
The TypeLibFunc attribute is used to specify typelib flags, for interoperability with COM.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Method)]
 public class TypeLibFuncAttribute: System.Attribute
 {
 public TypeLibFuncAttribute(TypeLibFuncFlags value) {...}

 public TypeLibFuncFlags Value { get {...} }
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

330 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

B.21 The TypeLibType attribute
The TypeLibType attribute is used to specify typelib flags, for interoperability with COM.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]
 public class TypeLibTypeAttribute: System.Attribute
 {
 public TypeLibTypeAttribute(TypeLibTypeFlags value) {...}

 public TypeLibTypeFlags Value { get {...} }
 }
}

B.22 The TypeLibVar attribute
The TypeLibVar attribute is used to specify typelib flags, for interoperability with COM.

namespace System.Runtime.InteropServices
{
 [AttributeUsage(AttributeTargets.Field)]
 public class TypeLibVarAttribute: System.Attribute
 {
 public TypeLibVarAttribute(TypeLibVarFlags value) {...}

 public TypeLibVarFlags Value { get {...} }
 }
}

B.23 Supporting enums
namespace System.Runtime.InteropServices
{
 public enum CallingConvention
 {
 Winapi = 1,
 Cdecl = 2,
 Stdcall = 3,
 Thiscall = 4,
 Fastcall = 5
 }

 public enum CharSet
 {
 None,
 Auto,
 Ansi,
 Unicode
 }

 public enum ComInterfaceType
 {
 InterfaceIsDual = 0,
 InterfaceIsIUnknown = 1,
 InterfaceIsIDispatch = 2,
 }

 public enum LayoutKind
 {
 Auto = 3,
 Explicit = 2,
 Sequential = 0
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix B Interoperability

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 331

 public enum TypeLibFuncFlags
 {
 FRestricted = 1,
 FSource = 2,
 FBindable = 4,
 FRequestEdit = 8,
 FDisplayBind = 16,
 FDefaultBind = 32,
 FHidden = 64,
 FUsesGetLastError = 128,
 FDefaultCollelem = 256,
 FUiDefault = 512,
 FNonBrowsable = 1024,
 FReplaceable = 2048,
 FImmediateBind = 4096
 }

 public enum TypeLibTypeFlags
 {
 FAppObject = 1,
 FCanCreate = 2,
 FLicensed = 4,
 FPreDeclId = 8,
 FHidden = 16,
 FControl = 32,
 FDual = 64,
 FNonExtensible = 128,
 FOleAutomation = 256,
 FRestricted = 512,
 FAggregatable = 1024,
 FReplaceable = 2048,
 FDispatchable = 4096,
 FReverseBind = 8192
 }

 public enum TypeLibVarFlags
 {
 FReadOnly = 1,
 FSource = 2,
 FBindable = 4,
 FRequestEdit = 8,
 FDisplayBind = 16,
 FDefaultBind = 32,
 FHidden = 64,
 FRestricted = 128,
 FDefaultCollelem = 256,
 FUiDefault = 512,
 FNonBrowsable = 1024,
 FReplaceable = 2048,
 FImmediateBind = 4096
 }

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

332 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

 public enum UnmanagedType
 {
 Bool = 0x2,
 I1 = 0x3,
 U1 = 0x4,
 I2 = 0x5,
 U2 = 0x6,
 I4 = 0x7,
 U4 = 0x8,
 I8 = 0x9,
 U8 = 0xa,
 R4 = 0xb,
 R8 = 0xc,
 BStr = 0x13,
 LPStr = 0x14,
 LPWStr = 0x15,
 LPTStr = 0x16,
 ByValTStr = 0x17,
 Struct = 0x1b,
 Interface = 0x1c,
 SafeArray = 0x1d,
 ByValArray = 0x1e,
 SysInt = 0x1f,
 SysUInt = 0x20,
 VBByRefStr = 0x22,
 AnsiBStr = 0x23,
 TBStr = 0x24,
 VariantBool = 0x25,
 FunctionPtr = 0x26,
 LPVoid = 0x27,
 AsAny = 0x28,
 RPrecise = 0x29,
 LPArray = 0x2a,
 LPStruct = 0x2b,
 CustomMarshaler = 0x2c,
 }
}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 333

C. Grammar

This appendix contains summaries of the lexical and syntactic grammars found in the main document, and of the
grammar extensions for unsafe code. Grammar productions appear here in the same order that they ap pear in the
main document.

C.1 Lexical grammar
input:

input-sectionopt

input-section:
input-section-part
input-section input-section-part

input-section-part:
input-elementsopt new-line
pp-directive

input-elements:
input-element
input-elements input-element

input-element:
whitespace
comment
token

C.1.1 Line terminators
new-line:

Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Line separator character (U+2028)
Paragraph separator character (U+2029)

C.1.2 White space
whitespace:

Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertical tab character (U+000B)
Form feed character (U+000C)

C.1.3 Comments
comment:

single-line-comment
delimited-comment

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

334 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

single-line-comment:
// input-charactersopt

input-characters:
input-character
input-characters input-character

input-character:
Any Unicode character except a new-line-character

new-line-character:
Carriage return character (U+000D)
Line feed character (U+000A)
Line separator character (U+2028)
Paragraph separator character (U+2029)

delimited-comment:
/* delimited-comment-charactersopt */

delimited-comment-characters:
delimited-comment-character
delimited-comment-characters delimited-comment-character

delimited-comment-character:
not-asterisk
* not-slash

not-asterisk:
Any Unicode character except *

not-slash:
Any Unicode character except /

C.1.4 Tokens
token:

identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

C.1.5 Unicode character escape sequences
unicode-escape-sequence:

\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit

C.1.6 Identifiers
identifier:

available-identifier
@ identifier-or-keyword

available-identifier:
An identifier-or-keyword that is not a keyword

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 335

identifier-or-keyword:
identifier-start-character identifier-part-charactersopt

identifier-start-character:
letter-character
_ (the underscore character)

identifier-part-characters:
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character:
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character:
A Unicode character of classes Lu, Ll, Lt, Lm, Lo, or Nl
A unicode-escape-sequence representing a character of classes Lu, Ll, Lt, Lm, Lo, or Nl

combining-character:
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character:
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character:
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

formatting-character:
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

336 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

C.1.7 Keywords
keyword: one of

abstract as base bool break

byte case catch char checked

class const continue decimal default

delegate do double else enum

event explicit extern false finally

fixed float for foreach goto

if implicit in int interface

internal is lock long namespace

new null object operator out

override params private protected public

readonly ref return sbyte sealed

short sizeof stackalloc static string

struct switch this throw true

try typeof uint ulong unchecked

unsafe ushort using virtual void

volatile while

C.1.8 Literals
literal:

boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

boolean-literal:
true

false

integer-literal:
decimal-integer-literal
hexadecimal-integer-literal

decimal-integer-literal:
decimal-digits integer-type-suffixopt

decimal-digits:
decimal-digit
decimal-digits decimal-digit

decimal-digit: one of
0 1 2 3 4 5 6 7 8 9

integer-type-suffix: one of
U u L l UL Ul uL ul LU Lu lU lu

hexadecimal-integer-literal:
0x hex-digits integer-type-suffixopt
0X hex-digits integer-type-suffixopt

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 337

hex-digits:
hex-digit
hex-digits hex-digit

hex-digit: one of
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

real-literal:
decimal-digits . decimal-digits exponent-partopt real-type-suffixopt
. decimal-digits exponent-partopt real-type-suffixopt
decimal-digits exponent-part real-type-suffixopt
decimal-digits real-type-suffix

exponent-part:
e signopt decimal-digits
E signopt decimal-digits

sign: one of
+ -

real-type-suffix: one of
F f D d M m

character-literal:
' character '

character:
single-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-character:
 Any character except ' (U+0027), \ (U+005C), and new-line-character

simple-escape-sequence: one of
\' \" \\ \0 \a \b \f \n \r \t \v

hexadecimal-escape-sequence:
\x hex-digit hex-digitopt hex-digitopt hex-digitopt

string-literal:
regular-string-literal
verbatim-string-literal

regular-string-literal:
" regular-string-literal-charactersopt "

regular-string-literal-characters:
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

regular-string-literal-character:
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

338 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

single-regular-string-literal-character:
Any character except " (U+0022), \ (U+005C), and new-line-character

verbatim-string-literal:
@" verbatim -string-literal-charactersopt "

verbatim-string-literal-characters:
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character:
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character:
any character except "

quote-escape-sequence:
""

null-literal:
null

C.1.9 Operators and punctuators
operator-or-punctuator: one of

{ } [] () . , : ;

+ - * / % & | ^ ! ~

= < > ? ++ -- && || << >>

== != <= >= += -= *= /= %= &=

|= ^= <<= >>= ->

C.1.10 Pre-processing directives
pp-directive:

pp-declaration
pp-conditional
pp-line
pp-diagnostic
pp-region

pp-new-line:
whitespaceopt single-line-commentopt new-line

conditional-symbol:
Any identifier-or-keyword except true or false

pp-expression:
whitespaceopt pp-or-expression whitespaceopt

pp-or-expression:
pp-and-expression
pp-or-expression whitespaceopt || whitespaceopt pp-and-expression

pp-and-expression:
pp-equality-expression
pp-and-expression whitespaceopt && whitespaceopt pp-equality-expression

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 339

pp-equality-expression:
pp-unary-expression
pp-equality-expression whitespaceopt == whitespaceopt pp-unary-expression
pp-equality-expression whitespaceopt != whitespaceopt pp-unary-expression

pp-unary-expression:
pp-primary-expression
! whitespaceopt pp-unary-expression

pp-primary-expression:
true
false
conditional-symbol
(pp-expression)

pp-declaration:
whitespaceopt # whitespaceopt define whitespace conditional-symbol pp-new-line
whitespaceopt # whitespaceopt undef whitespace conditional-symbol pp-new-line

pp-conditional:
pp-if-section pp-elif-sectionsopt pp-else-sectionopt pp-endif

pp-if-section:
whitespaceopt # whitespaceopt if pp-expression pp-new-line conditional-sectionopt

pp-elif-sections:
pp-elif-section
pp-elif-sections pp-elif-section

pp-elif-section:
whitespaceopt # whitespaceopt elif pp-expression pp-new-line conditional-sectionopt

else-section:
whitespaceopt # whitespaceopt else pp-new-line conditional-sectionopt

endif-line:
whitespaceopt # whitespaceopt endif pp-new-line

conditional-section:
input-section
skipped-section

skipped-section:
skipped-section-part
skipped-section skipped-section-part

skipped-section-part:
skipped-charactersopt new-line
pp-directive

skipped-characters:
whitespaceopt not-number-sign input-charactersopt

not-number-sign:
Any input-character except #

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

340 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

pp-line:
whitespaceopt # whitespaceopt line whitespaceopt line-indicator pp-new-line
whitespaceopt # whitespaceopt line defaultline-indicator:
integer-literal whitepaceopt file-nameopt

file-name:
" file-name-characters "

file-name-characters:
file-name-character
file-name-characters file-name-character

file-name-character:
Any input-character except "

pp-diagnostic:
whitespaceopt # whitespaceopt error whitespaceopt pp-message
whitespaceopt # whitespaceopt warning whitespaceopt pp-message

pp-message:
input-charactersopt new-line

pp-region:
pp-start-region conditional-sectionopt pp-end-region

pp-start-region:
whitespaceopt # whitespaceopt region whitespaceopt pp-message

pp-end-region:
whitespaceopt # whitespaceopt endregion whitespaceopt pp-message

C.2 Syntactic grammar

C.2.1 Basic concepts
namespace-name:

namespace-or-type-name

type-name:
namespace-or-type-name

namespace-or-type-name:
identifier
namespace-or-type-name . identifier

C.2.2 Types
type:

value-type
reference-type

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 341

simple-type:
numeric-type
bool

numeric-type:
integral-type
floating-point-type
decimal

integral-type:
sbyte

byte

short

ushort

int

uint

long

ulong

char

floating-point-type:
float

double

enum-type:
type-name

reference-type:
class-type
interface-type
array-type
delegate-type

class-type:
type-name
object
string

interface-type:
type-name

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsopt]

dim-separators:
,
dim-separators ,

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

342 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

delegate-type:
type-name

C.2.3 Variables
variable-reference:

expression

C.2.4 Expressions
argument-list:

argument
argument-list , argument

argument:
expression
ref variable-reference
out variable-reference

primary-expression:
array-creation-expression
primary-expression-no-array-creation

primary-expression-no-array-creation:
literal
simple-name
parenthesized-expression
member-access
invocation-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
new-expression
typeof-expression
sizeof-expression
checked-expression
unchecked-expression

simple-name:
identifier

parenthesized-expression:
(expression)

member-access:
primary-expression . identifier
predefined-type . identifier

predefined-type: one of
bool byte char decimal double float int long

object sbyte short string uint ulong ushort

invocation-expression:
primary-expression (argument-listopt)

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 343

element-access:
primary-expression-no-array-creation [expression-list]

expression-list:
expression
expression-list , expression

this-access:
this

base-access:
base . identifier
base [expression-list]

post-increment-expression:
primary-expression ++

post-decrement-expression:
primary-expression --

new-expression:
object-creation-expression
array-creation-expression
delegate-creation-expression

object-creation-expression:
new type (argument-listopt)

array-creation-expression:
new non-array-type [expression-list] rank-specifiersopt array-initializeropt
new array-type array-initializer

delegate-creation-expression:
new delegate-type (expression)

typeof-expression:
typeof (type)
typeof (void)

checked-expression:
checked (expression)

unchecked-expression:
unchecked (expression)

unary-expression:
primary-expression
+ unary-expression
- unary-expression
! unary-expression
~ unary-expression
* unary-expression
pre-increment-expression
pre-decrement-expression
cast-expression

pre-increment-expression:
++ unary-expression

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

344 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

pre-decrement-expression:
-- unary-expression

cast-expression:
(type) unary-expression

multiplicative-expression:
unary-expression
multiplicative-expression * unary-expression
multiplicative-expression / unary-expression
multiplicative-expression % unary-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression “ multiplicative-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
relational-expression is type
relational-expression as type

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

conditional-and-expression:
inclusive-or-expression
conditional-and-expression && inclusive-or-expression

conditional-or-expression:
conditional-and-expression
conditional-or-expression || conditional-and-expression

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 345

conditional-expression:
conditional-or-expression
conditional-or-expression ? expression : expression

assignment:
unary-expression assignment-operator expression

assignment-operator: one of
= += -= *= /= %= &= |= ^= <<= >>=

expression:
conditional-expression
assignment

constant-expression:
expression

boolean-expression:
expression

C.2.5 Statements
statement:

labeled-statement
declaration-statement
embedded-statement

embedded-statement:
block
empty-statement
expression-statement
selection-statement
iteration-statement
jump-statement
try-statement
checked-statement
unchecked-statement
lock-statement
using-statement

block:
{ statement-listopt }

statement-list:
statement
statement-list statement

empty-statement:
;

labeled-statement:
identifier : statement

declaration-statement:
local-variable-declaration ;
local-constant-declaration ;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

346 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

local-variable-declaration:
type variable-declarators

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializer

local-constant-declaration:
const type constant-declarators

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

expression-statement:
statement-expression ;

statement-expression:
invocation-expression
object-creation-expression
assignment
post-increment-expression
post-decrement-expression
pre-increment-expression
pre-decrement-expression

selection-statement:
if-statement
switch-statement

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

boolean-expression:
expression

switch-statement:
switch (expression) switch-block

switch-block:
{ switch-sectionsopt }

switch-sections:
switch-section
switch-sections switch-section

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 347

switch-section:
switch-labels statement-list

switch-labels:
switch-label
switch-labels switch-label

switch-label:
case constant-expression :
default :

iteration-statement:
while-statement
do-statement
for-statement
foreach-statement

while-statement:
while (boolean-expression) embedded-statement

do-statement:
do embedded-statement while (boolean-expression) ;

for-statement:
for (for-initializeropt ; for-conditionopt ; for-iteratoropt) embedded-statement

for-initializer:
local-variable-declaration
statement-expression-list

for-condition:
boolean-expression

for-iterator:
statement-expression-list

statement-expression-list:
statement-expression
statement-expression-list , statement-expression

foreach-statement:
foreach (type identifier in expression) embedded-statement

jump-statement:
break-statement
continue-statement
goto-statement
return-statement
throw-statement

break-statement:
break ;

continue-statement:
continue ;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

348 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

goto-statement:
goto identifier ;
goto case constant-expression ;
goto default ;

return-statement:
return expressionopt ;

throw-statement:
throw expressionopt ;

try-statement:
try block catch-clauses
try block finally-clause
try block catch-clauses finally-clause

catch-clauses:
specific-catch-clauses general-catch-clauseopt
specific-catch-clausesopt general-catch-clause

specific-catch-clauses:
specific-catch-clause
specific-catch-clauses specific-catch-clause

specific-catch-clause:
catch (class-type identifieropt) block

general-catch-clause:
catch block

finally-clause:
finally block

checked-statement:
checked block

unchecked-statement:
unchecked block

lock-statement:
lock (expression) embedded-statement

using-statement:
using (resource-acquisition) embedded-statement

resource-acquisition:
local-variable-declaration
expression

compilation-unit:
using-directivesopt attributesopt namespace-member-declarationsopt

namespace-declaration:
namespace qualified-identifier namespace-body ;opt

qualified-identifier:
identifier
qualified-identifier . identifier

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 349

namespace-body:
{ using-directivesopt namespace-member-declarationsopt }

using-directives:
using-directive
using-directives using-directive

using-directive:
using-alias-directive
using-namespace-directive

using-alias-directive:
using identifier = namespace-or-type-name ;

using-namespace-directive:
using namespace-name ;

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member-declaration

namespace-member-declaration:
namespace-declaration
type-declaration

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

C.2.6 Classes
class-declaration:

attributesopt class-modifiersopt class identifier class-baseopt class-body ;opt

class-modifiers:
class-modifier
class-modifiers class-modifier

class-modifier:
new
public

protected

internal
private
abstract
sealed

class-base:
: class-type
: interface-type-list
: class-type , interface-type-list

interface-type-list:
interface-type
interface-type-list , interface-type

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

350 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

class-body:
{ class-member-declarationsopt }

class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
destructor-declaration
static-constructor-declaration
type-declaration

constant-declaration:
attributesopt constant-modifiersopt const type constant-declarators ;

constant-modifiers:
constant-modifier
constant-modifiers constant-modifier

constant-modifier:
new
public
protected

internal
private

constant-declarators:
constant-declarator
constant-declarators , constant-declarator

constant-declarator:
identifier = constant-expression

field-declaration:
attributesopt field-modifiersopt type variable-declarators ;

field-modifiers:
field-modifier
field-modifiers field-modifier

field-modifier:
new
public
protected

internal
private

static

readonly

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 351

variable-declarators:
variable-declarator
variable-declarators , variable-declarator

variable-declarator:
identifier
identifier = variable-initializer

variable-initializer:
expression
array-initializer

method-declaration:
method-header method-body

method-header:
attributesopt method-modifiersopt return-type member-name (formal-parameter-listopt)

method-modifiers:
method-modifier
method-modifiers method-modifier

method-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

return-type:
type
void

member-name:
identifier
interface-type . identifier

method-body:
block
;

formal-parameter-list:
fixed-parameters
fixed-parameters , parameter-array
parameter-array

fixed-parameters:
fixed-parameter
fixed-parameters , fixed-parameter

fixed-parameter:
attributesopt parameter-modifieropt type identifier

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

352 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

parameter-modifier:
ref

out

parameter-array:
attributesopt params array-type identifier

property-declaration:
attributesopt property-modifiersopt type member-name { accessor-declarations }

property-modifiers:
property-modifier
property-modifiers property-modifier

property-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

member-name:
identifier
interface-type . identifier

accessor-declarations:
get-accessor-declaration set-accessor-declarationopt
set-accessor-declaration get-accessor-declarationopt

get-accessor-declaration:
attributesopt get accessor-body

set-accessor-declaration:
attributesopt set accessor-body

accessor-body:
block
;

event-declaration:
attributesopt event-modifiersopt event type variable-declarators ;
attributesopt event-modifiersopt event type member-name { event-accessor-declarations }

event-modifiers:
event-modifier
event-modifiers event-modifier

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 353

event-modifier:
new

public

protected

internal

private

static

virtual

sealed

override

abstract

extern

event-accessor-declarations:
add-accessor-declaration remove-accessor-declaration
remove-accessor-declaration add-accessor-declaration

add-accessor-declaration:
attributesopt add block

remove-accessor-declaration:
attributesopt remove block

indexer-declaration:
attributesopt indexer-modifiersopt indexer-declarator { accessor-declarations }

indexer-modifiers:
indexer-modifier
indexer-modifiers indexer-modifier

indexer-modifier:
new

public

protected

internal

private

virtual

sealed

override

abstract

indexer-declarator:
type this [formal-parameter-list]
type interface-type . this [formal-parameter-list]

operator-declaration:
attributesopt operator-modifiers operator-declarator operator-body

operator-modifiers:
operator-modifier
operator-modifiers operator-modifier

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

354 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

operator-modifier:
public

static

extern

operator-declarator:
unary-operator-declarator
binary-operator-declarator
conversion-operator-declarator

unary-operator-declarator:
type operator overloadable-unary-operator (type identifier)

overloadable-unary-operator: one of
+ - ! ~ ++ -- true false

binary-operator-declarator:
type operator overloadable-binary-operator (type identifier , type identifier)

overloadable-binary-operator: one of
+ - * / % & | ^ << >> == != > < >= <=

conversion-operator-declarator:
implicit operator type (type identifier)
explicit operator type (type identifier)

constructor-declaration:
attributesopt constructor-modifiersopt constructor-declarator constructor-body

constructor-modifiers:
constructor-modifier
constructor-modifiers constructor-modifier

constructor-modifier:
public
protected

internal
private

extern

constructor-declarator:
identifier (formal-parameter-listopt) constructor-initializeropt

constructor-initializer:
: base (argument-listopt)
: this (argument-listopt)

static-constructor-declaration:
attributesopt static identifier () block

destructor-declaration:
attributesopt ~ identifier () block

operator-body:
block
;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 355

C.2.7 Structs
struct-declaration:

attributesopt struct-modifiersopt struct identifier struct-interfacesopt struct-body ;opt

struct-modifiers:
struct-modifier
struct-modifiers struct-modifier

struct-modifier:
new
public

protected

internal
private

struct-interfaces:
: interface-type-list

struct-body:
{ struct-member-declarationsopt }

struct-member-declarations:
struct-member-declaration
struct-member-declarations struct-member-declaration

struct-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
static-constructor-declaration
type-declaration

C.2.8 Arrays
array-type:

non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsopt]

dim-separators:
,
dim-separators ,

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

356 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

array-initializer:
{ variable-initializer-listopt }
{ variable-initializer-list , }

variable-initializer-list:
variable-initializer
variable-initializer-list , variable-initializer

variable-initializer:
expression
array-initializer

C.2.9 Interfaces
interface-declaration:

attributesopt interface-modifiersopt interface identifier interface-baseopt interface-body ;opt

interface-modifiers:
interface-modifier
interface-modifiers interface-modifier

interface-modifier:
new
public

protected

internal
private

interface-base:
: interface-type-list

interface-body:
{ interface-member-declarationsopt }

interface-member-declarations:
interface-member-declaration
interface-member-declarations interface-member-declaration

interface-member-declaration:
interface-method-declaration
interface-property-declaration
interface-event-declaration
interface-indexer-declaration

interface-method-declaration:
attributesopt newopt return-type identifier (formal-parameter-listopt) ;

interface-property-declaration:
attributesopt newopt type identifier { interface-accessors }

interface-accessors:
attributesopt get ;
attributesopt set ;
attributesopt get ; attributesopt set ;
attributesopt set ; attributesopt get ;

interface-event-declaration:
attributesopt newopt event type identifier ;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 357

interface-indexer-declaration:
attributesopt newopt type this [formal-parameter-list] { interface-accessors }

C.2.10 Enums
enum-declaration:

attributesopt enum-modifiersopt enum identifier enum-baseopt enum-body ;opt

enum-base:
: integral-type

enum-body:
{ enum-member-declarationsopt }
{ enum-member-declarations , }

enum-modifiers:
enum-modifier
enum-modifiers enum-modifier

enum-modifier:
new
public

protected

internal
private

enum-member-declarations:
enum-member-declaration
enum-member-declarations , enum-member-declaration

enum-member-declaration:
attributesopt identifier
attributesopt identifier = constant-expression

C.2.11 Delegates
delegate-declaration:

attributesopt delegate-modifiersopt delegate return-type identifier (formal-parameter-listopt
) ;

delegate-modifiers:
delegate-modifier
delegate-modifiers delegate-modifier

delegate-modifier:
new
public

protected

internal
private

C.2.12 Attributes
attributes:

attribute-sections

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

358 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

attribute-sections:
attribute-section
attribute-sections attribute-section

attribute-section:
[attribute-target-specifieropt attribute-list]
[attribute-target-specifieropt attribute-list ,]

attribute-target-specifier:
attribute-target :

attribute-target:
assembly
field
event
method
module
param
property
return

type

attribute-list:
attribute
attribute-list , attribute

attribute:
attribute-name attribute-argumentsopt

attribute-name:
type-name

attribute-arguments:
(positional-argument-listopt)
(positional-argument-list , named-argument-list)
(named-argument-list)

positional-argument-list:
positional-argument
positional-argument-list , positional-argument

positional-argument:
attribute-argument-expression

named-argument-list:
named-argument
named-argument-list , named-argument

named-argument:
identifier = attribute-argument-expression

attribute-argument-expression:
expression

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 359

C.3 Grammar extensions for unsafe code

C.3.1 Unsafe contexts
class-modifier:

...
unsafe

struct-modifier:
...
unsafe

interface-modifier:
...
unsafe

delegate-modifier:
...
unsafe

field-modifier:
...
unsafe

method-modifier:
...
unsafe

property-modifier:
...
unsafe

event-modifier:
...
unsafe

indexer-modifier:
...
unsafe

operator-modifier:
...
unsafe

constructor-modifier:
...
unsafe

destructor-declaration:
attributesopt unsafeopt ~ identifier () block

static-constructor-declaration:
attributesopt unsafeopt static identifier () block

embedded-statement:
...
unsafe-statement

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

360 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

unsafe-statement:
unsafe block

C.3.1.1 Pointer types
type:

value-type
reference-type
pointer-type

pointer-type:
unmanaged-type *
void *

unmanaged-type:
type

C.3.1.2 Pointers in expressions
primary-expression-no-array-creation:

...
pointer-member-access
pointer-element-access
sizeof-expression

unary-expression:
...
pointer-indirection-expression
addressof-expression

C.3.1.3 Pointer indirection
pointer-indirection-expression:

* unary-expression

C.3.1.4 Pointer member access
pointer-member-access:

primary-expression -> identifier

pointer-element-access:
primary-expression-no-array-creation [expression]

C.3.1.5 The address-of operator
addressof-expression:

& unary-expression

C.3.1.6 The sizeof operator
sizeof-expression:

sizeof (unmanaged-type)

embedded-statement:
...
fixed-statement

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

 Appendix C Grammar

Copyright Microsoft Corporation 1999-2000. All Rights Reserved. 361

C.3.1.7 The fixed statement
fixed-statement:

fixed (pointer-type fixed-pointer-declarators) embedded-statement

fixed-pointer-declarators:
fixed-pointer-declarator
fixed-pointer-declarators , fixed-pointer-declarator

fixed-pointer-declarator:
identifier = fixed-pointer-initializer

fixed-pointer-initializer:
& variable-reference
expression variable-initializer:
expression
array-initializer
stackalloc-initializer

C.3.1.8 Stack allocation
stackalloc-initializer:

stackalloc unmanaged-type [expression]

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

C# LANGUAGE SPECIFICATION

362 Copyright Microsoft Corporation 1999-2000. All Rights Reserved.

D. References

Unicode Consortium. The Unicode Standard, Version 3.0. Addison-Wesley, Reading, Massachusetts, 2000,
ISBN 0-201-616335-5.

IEEE. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985. Available from
http://www.ieee.org.

ISO/IEC. C++. ANSI/ISO/IEC 14882:1998.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

